حداقل تخلیه مایع Minimum liquid discharge

حداقل تخلیه مایع Minimum liquid discharge

منابع آب شیرین در سراسر جهان به دلیل افزایش جمعیت، استفاده در صنعت و تغییر الگوی آب و هوا، به طور فزاینده ای تحت فشار قرار می گیرند. این تنش ها نیاز به استفاده حداکثر از هر قطره آب موجود را ایجاد می کند. سیستم های تصفیه آب ذاتاً جریان پسماندی تولید می کنند. این جریان زباله اغلب می تواند 30-20٪ از کل آب ورودی در سیستم تصفیه را تشکیل دهد، که از نظر انسانی و اقتصادی از دست دادن قابل توجهی از یک منبع با ارزش است. به حداقل رساندن این جریان زباله بخشی کلیدی از راه حل بحران آب برای صنعت و مردم است. اینجاست که مفهوم تخلیه حداقل مایع (MLD) به کار می رود. تکنیک های MLD اغلب برای کاهش هزینه های کلی برنامه های تخلیه مایع صفر (ZLD) عمل می کنند. در صورت عدم نیاز به تخلیه مایع صفر، MLD می تواند یک مزیت اقتصادی قابل توجه و صرفه جویی در مصرف آب را فراهم کند.
حداقل تخلیه مایع به فرایندی گفته می شود که طی آن سیستم آب یا فاضلاب تصفیه شده را در خود بازیافت می کند تا میزان پساب نهایی تخلیه شده در محیط را محدود کند. مشابه تخلیه مایع صفر یا ZLD ، حداقل تخلیه مایع یا MLD از کریستالیزورهایی استفاده می کند که گرما تولید می کنند تا آب تصفیه شده در جو آزاد شود. حداقل تخلیه مایعات معمولاً بیشتر از تخلیه مایع صفر دیده می شود زیرا به اندازه ZLD پرهزینه نیست اما هنوز مطابق با مقررات زیست محیطی است.

حداقل تخلیه مایع (MLD) فرآیندهای تخلیه مایع نزدیک به صفر است که جریان های پساب بسیار غلیظ تولید می کند. به طور معمول MLD به عنوان فرآیندی تعریف می شود که حداقل 95٪ آب را بازیابی می کند. در بعضی موارد استفاده از محلول MLD و ذخیره یا دفع این زباله ها در مقایسه با محلول ZLD که می تواند ضایعات کمتری داشته باشد، می تواند مقرون به صرفه باشد.

 

حداقل تخلیه مایع Minimum liquid discharge عمران سازان مهاب

حداقل تخلیه مایع Minimum liquid discharge

مزایای دستیابی به بازیابی آب 95-98٪ با استفاده از فناوری MLD

• کاهش در هزینه های تخلیه
• کاهش یا جلوگیری از جریمه های نظارتی
• افزایش تأمین آب در مناطق تحت فشار آب
• پایداری کلی گیاهان شهری و صنعتی

تعریف MLD و ZLD برای کسانی که آشنا نیستند

MLD به فرآیندهای تصفیه آب اشاره دارد که در آن 70-95٪ آب بازیابی می شود. به طور معمول ، از فناوری های مبتنی بر غشا مانند اسمز معکوس و نانو فیلتراسیون – با ترفندهای احتمالی اسمز رو به جلو – برای دستیابی به MLD استفاده می شود.
ZLD به فرآیندهای تصفیه آب اشاره دارد که در آن 95-100٪ آب بازیابی می شود. به طور معمول ، ZLD از طریق فناوری هایی مانندکریستالیزر حاصل می شود. پس از بازیابی 95٪ آب ، کنسانتره باقیمانده معمولاً دارای مقادیر BOD ، COD ، TDS و TSS بالا است و حذف 5٪ آخر در بسیاری از موارد هزینه ها را دو برابر می کند. فن آوری های اسمز جلو می توانند هزینه های OPEX و CAPEX را در هر دو فرایند MLD و ZLD کاهش دهند.
برای مدت زمان طولانی ZLD به عنوان روشی سازگار با محیط زیست برای کمک به صنعت در تأمین نیازهای روزافزون به تخلیه و بازیافت جریان فاضلاب آنها پیشنهاد شده است. با این حال فرایندهای ZLD دارای مشکلاتی به شرح ذیل هستند:
• از نظر فنی پیچیده است
• بسیار گران
• به دلیل مواد اضافی و انرژی مورد نیاز لزوما سازگار با محیط زیست نیستند

بنابراین در بیشتر موارد، برای بهبود اثر آب، رویکرد تخلیه مایع (MLD) برای حل مشکل تصفیه فاضلاب را با استفاده از فن آوری های مبتنی بر فیلتراسیون اتخاذ می شود که می تواند با کسری از هزینه های ZLD به بازیابی زیاد آب دست یافت.

حداقل تخلیه مایع Minimum liquid discharge

حداقل تخلیه مایع Minimum liquid discharge

شکل 1 – بازیاب آب فرآیند کریستالیزاسیون RO-MD-MCV – در مقابل SEC های مربوطه. در نمودار همچنین مقادیر انرژی مورد نیاز در هر مرحله از فرآیند همراه با تقاضای انرژی در متر مکعب از مرحله MLD و ZLD وجود دارد. این فرآیند درست بعد از MD به یک مرحله MLD و پس از Crystalizer به یک ZLD می رسد.
همانطور که می بینیم، انرژی مورد نیاز برای بازیابی بیشتر پس از MD افزایش می یابد! در این مرحله هر کاربر باید تصمیم بگیرد که آیا قدم اضافی به جلو واقعا ارزشش را دارد. به خصوص که هزینه فرآیند ZLD به طور معمول 60-70٪ از کل CAPEX است.

چالش های دستیابی به MLD

افزایش بازیابی سیستم تصفیه آب به 95-98٪ کار بی اهمیتی نیست. اغلب اوقات ، یکی از چالش برانگیزترین آلاینده ها برای حذف آب از پسماند، جامدات محلول (TDS) است. حذف TDS معمولاً با مصرف انرژی زیاد انجام می شود و انرژی حرارتی بیشتری را برای حذف نمک بیشتر طلب می کند و می تواند چالش های عملکردی ناشی از جرم گیری و رسوب دهی را ایجاد کند. بعلاوه ، با افزایش بازیابی آب، انرژی بیشتری برای نگهداری نمکهای موجود در جریان پسماند از جریان محصول مورد نیاز است. وجود موادی مانند سولفات کلسیم ، کربنات کلسیم و سیلیس چالش های بازیابی بالا برای MLD را تشکیل می دهد. این آلاینده ها باعث کاهش کارایی فرآیندهای جداسازی مانند اسمز معکوس می شوند و می توانند بازیابی آب را محدود کنند.حداقل فرآیندهای تخلیه مایع (MLD) می تواند تا 95٪ آب بازیابی کند با نصف هزینه دستیابی به تخلیه کامل مایع صفر.
Water Technology Online اخیراً مقاله “رویکرد MLD فرصت قابل توجهی را ارائه می دهد” منتشر کرد که در آن نویسندگان استدلال می کنند که کاهش تخلیه لزوماً نباید تا 100٪ آب بازیابی و تخلیه کامل مایع انجام شود. جنرال موتورز 90 درصد را به عنوان عدد بهینه اقتصادی برای تبدیل فاضلاب خود تعیین کرده است.

دلیل جایگزینی MLD با ZLD

ZLD ممکن است زمانی مفید باشد که قوانین محدودی در آن وجود داشته باشد یا در مناطق حساس به آب جهان وجود داشته باشد ، زیرا هر قطره مهم است اما از نظر اقتصادی بسیار چالش برانگیز است. چند مرحله آخر که برای دستیابی به ZLD کامل لازم است تقریباً می تواند هزینه ها را دو برابر کند. یک نمونه موفق از بکارگیری فناوری MLD در کارخانه مونتاژ خودروهای جنرال موتور در سان لوئیس پوتوسی، مکزیک اتفاق افتاد. این نیروگاه در منطقه ای خشک و دور افتاده قرار دارد و هیچ جریان دریافت کننده یا فاضلاب شهری برای تخلیه فاضلاب در دسترس نیست. با استفاده از ترکیبی از فناوری RO ، یک فرآیند سختی گیری شیمیایی با سرعت بالا و سایر فناوری ها، این نیروگاه 90٪ از فاضلاب خود را بازیابی و مجدداً استفاده می کند، بقیه 10٪ پسماند مایع باقی مانده در استخراج و در استخرهای مجاور خورشیدی تخلیه می شود. سایر گزینه های فناوری مانند HPRO ، EDR ، FO و MD، ترکیبات و هیبریدهای آنها نیز می توانند باعث بهبودی بالا (70-80٪) شوند و به انرژی بسیار کمتری نسبت به تبخیر حرارتی نیاز دارند، که باعث کاهش اندازه و در نتیجه تبلور می شود ( در صورت نیاز به ZLD)

حداقل تخلیه مایع Minimum liquid discharge

حداقل تخلیه مایع Minimum liquid discharge

کاهش هزینه ها و تأثیرات زیست محیطی با استفاده از MLD

قوی ترین استدلال در MLD کاهش CAPEX و OPEX در مقایسه با طراحی ZLD است. به همین سبب است که هزینه های فرآیندهای غشایی و فیلتراسیون در مقایسه با فناوری های حرارتی ZLD نسبتاً کم است. پیشرفت های جدید فن آوری می تواند اندازه کریستالیزرها یا سایر تجهیزات مورد استفاده را به حداقل برساند و حتی شاید کاربرد آنها را از بین ببرد. در عین حال این فناوری ها از ظرفیت بازیابی بالاتری برخوردار هستند. به خصوص از آنجا که بعضی از آنها می توانند از گرمای تلف شده استفاده کنند. لذا جهت صرفه جویی در هزینه و بهره وری در طراحی فرآیند MLD توجه به این موارد بسیار مهم می باشد.

ارزیابی نیاز به MLD

برای درک اینکه آیا در یک واحد تصفیه به MLD نیاز هست یا نه! اولین سوال این است که آیا استفاده مجدد از آب یا باز چرخانی پساب مورد نیاز است. اگر چنین باشد، روش MLD می تواند همان چیزی باشد که لازم است. اگر لازم است قوانین محلی در مورد تخلیه پساب رعایت شود، MLD می تواند بخشی از راه حل باشد که ممکن است شامل استخرهای ZLD / تبخیر / تزریق آب زیرزمینی باشد. مرحله بعدی شناسایی جریان های پساب از نظر دبی، آلاینده ها و غلظت های مربوطه است. به عنوان مثال میعانات به تصفیه بسیار کمی نیاز دارند در حالی که جریان های پساب با غلظت بالای ترکیبات آلی ، نمک ها ، فلزات و مواد معلق به احتمال زیاد به تصفیه گسترده نیاز دارند.

 

 

هیپوکلریت سدیم (NaOCl) - عمران سازان مهاب

هیپوکلریت سدیم (NaOCl)

هیپوکلریت سدیم ترکیبی است که می تواند به طور موثر برای تصفیه آب استفاده شود. در مقیاس وسیع برای پاک کردن سطوح، سفید شدن، از بین بردن بو و ضد عفونی آب استفاده می شود. هیپوکلریت سدیم ناپایدار است. سپس هیپوکلریت سدیم گرم شده از هم می پاشد. این اتفاق زمانی می افتد که هیپوکلریت سدیم با اسیدها، نور خورشید، فلزات خاص وگازهای سمی و خورنده از جمله گاز کلر تماس پیدا کند. هیپوکلریت سدیم یک اکسید کننده قوی است و با ترکیبات و گیرنده های قابل اشتعال واکنش نشان می دهد. محلول هیپوکلریت سدیم یک پایه ضعیف است که قابل اشتعال است. این خصوصیات را باید هنگام حمل ، نگهداری و استفاده از هیپوکلریت سدیم در نظر داشت.

هیپوکلریت سدیم (NaOCl) - عمران سازان مهاب

هیپوکلریت سدیم (NaOCl) – عمران سازان مهاب

با افزودن هیپوکلریت سدیم به آب، مقدار pH چه اتفاقی می افتد؟

به دلیل وجود سود سوز آور در هیپوکلریت سدیم، PH آب افزایش می یابد. وقتی هیپو کلریت سدیم در آب حل می شود، دو ماده تشکیل می شود که در اکسیداسیون وگندزدایی نقش دارند. اینها اسید هیپوکلروس (HOCl) و یون هیپوکلریت کمتر فعال هستند. PH آب میزان اسید هیپوکلروس را تعیین می کند.

کاربردهای هیپوکلریت سدیم چیست؟

از هیپوکلریت سدیم در مقیاس وسیع استفاده می شود. به عنوان مثال در کشاورزی، صنایع شیمیایی، صنایع رنگ و آهک، صنایع غذایی، صنایع شیشه، صنایع کاغذ، صنایع دارویی، صنایع مصنوعی و صنایع دفع زباله. در صنعت نساجی از هیپوکلریت سدیم برای سفید کردن منسوجات استفاده می شود. بعضی اوقات به فاضلاب صنعتی اضافه می شود. این کار برای کاهش بو انجام می شود. هیپوکلریت گاز هیدروژن گوگرد (SH) و آمونیاک را خنثی می کند. همچنین برای سم زدایی از حمام سیانور در صنایع فلزی استفاده می شود. می توان از هیپوکلریت برای جلوگیری از رشد جلبک و صدف در برج های خنک کننده استفاده کرد. در تصفیه آب، از هیپوکلریت برای ضدعفونی آب استفاده می شود.

ضد عفونی سدیم هیپوکلریت چگونه کار می کند؟

با افزودن هیپوکلریت به آب، اسید هیپوکلروس (HOCl) تشکیل می شود و اسید هیپوکلروس به اسید کلریدریک واکسیژن تقسیم می شود. اتم اکسیژن یک اکسید کننده بسیار قوی است. هیپوکلریت سدیم در برابر باکتری ها، ویروس ها و قارچ ها موثر است. هیپوکلریت سدیم به همان روش کلر ضد عفونی می کند.

چگونه هیپوکلریت سدیم در استخرها استفاده می شود

اسید هیپوکلروس در اثر واکنش هیدروکسید سدیم با گاز کلر تولید می شود. در آب، به اصطلاح “کلر فعال” تشکیل می شود. روشهای مختلفی برای استفاده از هیپوکلریت سدیم وجود دارد. برای الکترولیز نمک در محلول، محلول نمک در آب استفاده می شود. یونهای سدیم و کلرید تولید می شوند.
4NaCl- → 4Na + + 4Cl-
با هدایت محلول نمک به سلول الکترولیز، واکنشهای زیر در الکترودها اتفاق می افتد:
2Cl- → Cl2 + 2e- 2H2O + 2e- → H2 + 2OH-
2H2O → O2 + 4H + 4e-
متعاقباً، کلر و هیدروکسید واکنش داده و هیپوکلریت ایجاد می کنند:
OH- + Cl2 → HOCl + Cl-
مزیت سیستم الکترولیز نمک این است که نیازی به انتقال یا ذخیره هیپوکلریت سدیم نیست. وقتی هیپوکلریت سدیم به مدت طولانی ذخیره شود، غیرفعال می شود. یکی دیگر از مزایای فرآیند در محل این است که کلر pH را کاهش می دهد و برای کاهش pH نیازی به اسید دیگری نیست. گاز هیدروژنی که تولید می شود انفجاری است و در نتیجه برای جلوگیری از خروج آن، تهویه لازم است. این سیستم کند است و باید از یک بافر اسید هیپوکلروس اضافی استفاده شود. نگهداری و خرید سیستم الکترولیز بسیار گرانتر از هیپوکلریت سدیم است. هنگامی که از هیپوکلریت سدیم استفاده می شود ، استیک یا اسید سولفوریک به آب اضافه می شود. مصرف بیش از حد آن می تواند گازهای سمی ایجاد کند. اگر مقدار مصرف خیلی کم باشد، PH بالا می رود و می تواند چشم را تحریک کند. از آنجا که از هیپوکلریت سدیم هم برای اکسیداسیون آلودگی ها (ادرار ، عرق ، مواد آرایشی) و هم برای از بین بردن میکروارگانیسم های بیماریزا استفاده می شود ، غلظت مورد نیاز هیپوکلریت سدیم به غلظت این آلودگی ها بستگی دارد. به خصوص میزان آلودگی آلی غلظت مورد نیاز را تعیین می کند. اگر آب قبل از استفاده از هیپوکلریت سدیم فیلتر شود، به هیپوکلریت سدیم کمتری نیاز است.

اثرات هیپوکلریت سدیم بر سلامتی چیست؟

هیچ مقدار آستانه ای برای قرار گرفتن در معرض هیپوکلریت سدیم وجود ندارد. اثرات مختلف سلامتی پس از قرار گرفتن در معرض هیپوکلریت سدیم رخ می دهد. افراد با استنشاق آئروسل ها در معرض هیپوکلریت سدیم قرار می گیرند. این باعث سرفه و گلودرد می شود. بعد از بلع هیپوکلریت سدیم درد معده، احساس سوزش، سرفه، اسهال، گلودرد و استفراغ است. هیپوکلریت سدیم روی پوست یا چشم ها باعث قرمزی و درد می شود. پس از مواجهه طولانی مدت، پوست می تواند حساس شود. هیپوکلریت سدیم برای موجودات آب سمی است. هنگام تماس با نمکهای آمونیوم جهش زا و بسیار سمی است.

هیپوکلریت سدیم در استخرهای شنا

غلظت هیپوکلریت سدیم که در استخرها وجود دارد به طور کلی برای افراد مضر نیست. وقتی کلر در آب زیاد باشد، این باعث سوزاندن بافت های بدن می شود که به مجاری هوا، معده و روده، چشم و پوست آسیب می رساند. هنگامی که از هیپوکلریت سدیم در استخرها استفاده می شود، گاهی اوقات باعث قرمزی چشم می شود و بوی کلر می دهد. وقتی مقدار زیادی اوره (مخلوطی از ادرار و عرق) وجود دارد، اسید هیپوکلروس و اوره واکنش داده و کلرامین تشکیل می دهند. این کلرامین ها غشای مخاطی را تحریک می کنند و به اصطلاح “بوی کلر” ایجاد می کنند. در بیشتر استخرها با تصفیه آب و تهویه از بروز این مشکلات جلوگیری می شود. تحریک چشم بعد از مدتی از بین می رود.

هیپوکلریت سدیم به عنوان ضد عفونی کننده دارای مزایای زیر است:
در صورت تولید در سایت، به راحتی قابل ذخیره و حمل و نقل است.
مصرف آن ساده است.
حمل و نگهداری هیپوکلریت سدیم بی خطر است.
هیپوکلریت سدیم به اندازه گاز کلر برای ضد عفونی موثر است.
معایب استفاده از هیپوکلروریت سدیم
هیپوکلریت سدیم ماده ای خطرناک و خورنده است. هیپوکلریت سدیم نباید با هوا تماس داشته باشد، زیرا این امر باعث تجزیه آن می شود.

 

هیپوکلریت سدیم (NaOCl) - عمران سازان مهاب

هیپوکلریت سدیم (NaOCl) – عمران سازان مهاب

کاربرد سدیم متابیسولفیت متابیسولفیت سدیم (پیروسولفیت) - عمران سازان مهاب

آشنایی با کاربردهای سدیم متابیسولفیت

از این ماده بعضاً به عنوان دی سدیم (متابیسولفیت) یاد می شود. به عنوان ضد عفونی کننده، آنتی اکسیدان و ماده نگهدارنده استفاده می شود. سدیم متابیسولفیت برای از بین بردن مقدار کلر در تصفیه آب استفاده می شود. سدیم متابیسولفیت به عنوان حذف کننده اکسیژن محلول در آب عمل می کند. به عنوان نمونه در فرآیند گازدهی به ذغال سنگ که پساب قیر تولید می کند و می تواند مشکلات جدی زیست محیطی ایجاد کند. تحقیقاتی که برای تصفیه فاضلاب انجام شده است مستلزم صرف هزینه زیاد با طی مراحل طولانی است. به همین دلیل، یافتن روش دیگری که نسبتاً ارزان تر و ساده باشد، ضروری است. در پژوهشی با همین هدف مواد شیمیایی از قبیل هیپوکلریت کلسیم (CHC) ، پراکسید هیدروژن (H2O2) ، بی سولفیت سدیم (SBS) و متابیسولفیت سدیم (SMBS) جهت تصفیه پساب زغال سنگ مورد استفاده قرارگرفتند. نتایج نشان داد که استفاده از SMBS می تواند (TOC) را به طور مطلوب کاهش دهد. راندمان کاهش فنل کل، PAH کل ، بنزن و تولوئن به 100٪ می رسد. با این فرآیند ، مقادیر pH و رادیواکتیویته نیازهای تعیین شده توسط دولت جمهوری اندونزی را نیز برآورده می کنند.

کاربرد سدیم متابیسولفیت متابیسولفیت سدیم (پیروسولفیت) - عمران سازان مهاب

کاربرد سدیم متابیسولفیت متابیسولفیت سدیم (پیروسولفیت)

افزودن مقدار مشخصی آب به قطران بیشترین تأثیر را در حل شدن ماده محلول در قطران نسبت به عامل تکان دادن و زمان دارد. SMBS در مقایسه با H2O2 ، CHC و SBS برای درمان قطران موثرتر است. و در صورت استفاده از این ماده برخی از پارامترهای اندازه گیری مانند TOC ، فنل کل و PAH به شدت کاهش می یابد. مقدار pH و خصوصیات رادیواکتیو مطابق با الزامات مندرج در قوانین جمهوری اندونزی است. تحقیقات بیشتر به منظور درمان سولفات انجام می شود. روشی که انجام آن آسان است با استفاده از روش بارش است. یونهای سولفات را می توان بصورت سولفات کلسیم با افزودن آهک رسوب داد.

متابیسولفیت سدیم (پیروسولفیت) که برای حذف کلر باقیمانده از آب استفاده می شود ، قادر به اتصال اکسیژن محلول در آب است. واکنش اتصال اکسیژن در دو مرحله انجام می شود:
1) هیدرولیز درون آب انجام می شود تا سدیم هیدروسولفیت تولید شود، سپس
2) هیدروسولفیت سدیم به هیدروسولفات اکسید می شود

آخرین فرآیند دارای سرعت نسبتاً کمی است و به عوامل مختلفی بستگی دارد (دما ، میزان اکسیژن اولیه ، در دسترس بودن کاتالیزور و غلظت پیروسولفیت). با توجه به اینکه غلظت اکسیژن در آب پرمیت واحد فیلتراسیون کمتر از میزان اشباع استُ یک، زمان لازم برای بدست آوردن این سطح مانع کوتاه تر خواهد بود. عاملی مانند جریان آب و تلاطم همچنین باعث افزایش سرعت واکنش اتصال به اکسیژن می شود، که تحت این شرایط غیرقابل دستیابی است.

منابع

W A Setiawan et al., Assesing efectiveness of sodium metabisulfite for treatment of coal tar wastewater, Earth and Environmental Science, 2018.
Oleksandr Goncharov, The use of different brands of sodium metabisulfite for water deoxygenation, technical report, 2011.

سولفات آلومینیوم در تصفیه آب

سولفات آلومینیوم در تصفیه آب

سولفات آلومینیوم در تصفیه آب به عنوان ماده ای مهم مطرح بوده و در رنگ آمیزی و چاپ پارچه استفاده می شود. نقش این ماده در تصفیه آب، تبدیل ناخالصی های معلق به ذرات بزرگتر تبدیل میباشد این امر موجب میشود این ناخالصی ها به راحتی در ته مخازن قرار بگیرند (یا فیلتر شوند) و یا به عبارتی دیگر آسان لخته شوند. تصفیه آب با استفاده از سولفات آلومینیوم (VI) سبب می شود که گونه های پلی آلومینیوم را که واکنش شیمیایی دارند با سرعت بیشتری جذب می شوند.

سولفات آلومینیوم در تصفیه آب

سولفات آلومینیوم در تصفیه آب

تحقیقات انجام شده در خصوص قدرت حذف کدورت با آلومینیوم سولفات

کلوئیدها ذرات معلق کوچکی در آب هستند که به دلیل وزن سبک و پایداری نمی توانند به صورت طبیعی ته نشین یا خارج شوند. این ذرات تا حدی پایداری دارند و باعث کدورت آب می شوند. برخی نگرانی ها در مورد کارایی حذف کلوئید در تصفیه خانه های آب ایران وجود دارد. در یک مطالعه علمی که در دانشکده محیط زیست دانشگاه تهران انجام گرفت نشان داد، کارآیی سولفات آلومینیوم و کلرید پلی آلومینیوم در مقادیر مختلف pH و مقدار منعقد کننده به منظور یافتن شرایط عملیاتی مطلوب برای آبهای با کدورت کم تا زیاد بررسی شد و نتایج نشان داد که روند انعقاد می تواند با استفاده از سطوح نسبتاً کم سولفات آلومینیوم (10 تا 20 میلی گرم در لیتر) از بین بردن کدورت از آب های کدورت کم تا متوسط بسیار خوب عمل کند. هنگامی که کدورت های اولیه آب به 500 و 1000 NTU افزایش یافت ، بازده حذف کدورت همچنان بالا بود. بیشترین راندمان حذف کدورت برای آلوم و 9/82 تا 9/9 درصد برای کلرید پلی آلومینیوم در محدوده کدورت اعمال شده بود. محدوده حداکثر pH برای حذف کدورت با استفاده از آلوم 5-6 گزارش شد. راندمان حذف کدورت برای پلی آلومینیوم کلراید در مقایسه با سولفات آلومینیوم در شرایط مطلوب بیشتر بود. راندمان حذف کدورت برای تأمین محدودیتهای ملی آب آشامیدنی ایران (5 NTU) در دوز آلوم و PAC مطلوب برای آبهایی با کدورت اولیه 10-100 NTU کافی بود. استفاده از 5 میلی گرم در لیتر آهک به عنوان یک کمک انعقادی می تواند در برخی موارد رفع کدورت را تأیید کرد.

در تحقیق دیگری با استفاده از آلوم و سولفات آهن ، نتایج نشان داد میانگین بازده برای منعقد کننده سولفات آهن در مقایسه با آلوم بالاتر بوده است.
راه کاهش مصرف آلوم در صنعت تصفیه آب با استفاده از مدل سازی
تعیین دوز بهینه انعقادی مسئله خاصی است که در فرآیندهای تصفیه آب مورد توجه قرار می گیرد. دوز انعقادی با کیفیت آب خام مربوط و همچنین برخی دیگر از پارامترها مانند کدورت ، pH ، دما و رسانایی ارتباط دارد. مدلی بر اساس داده های فرآیند فعلی ثبت شده در تصفیه خانه ای واقع در مرکز مراکش به همین منظور ارایه شده است. این مدل غیرخطی مربوط به کدورت ، pH و پارامترهای دما است. مقایسه دوزهای آلومینیوم اندازه گیری شده و دوزهای آلوم محاسبه شده توسط این مدل نتیجه بسیار جالبی را نشان می دهد. در حقیقت، مدلسازی می تواند بیش از 10 درصد از مصرف سولفات آلومینیوم بکاهد. بنابراین ، این مدل می تواند در تعیین دوزهای آلومینیوم در دیگر تصفیه خانه ها تعمیم یابد.

سولفات آلومینیوم در تصفیه آب

سولفات آلومینیوم در تصفیه آب

کاهش مصرف آلوم در صنعت تصفیه آب با استفاده از مدل سازی
دوز انعقادی با کیفیت آب خام مربوطه و همچنین برخی دیگر از پارامترها مانند کدورت ، pH ، دما و رسانایی ارتباط دارد. مدلی بر اساس داده های فرآیند فعلی ثبت شده در تصفیه خانه ای واقع در مرکز مراکش به همین منظور ارایه شده است. این مدل غیرخطی مربوط به کدورت ، pH و پارامترهای دما است. مقایسه دوزهای آلومینیوم اندازه گیری شده و دوزهای آلوم محاسبه شده توسط این مدل نتیجه بسیار جالبی را نشان می دهد. در حقیقت، مدلسازی می تواند بیش از 10 درصد از مصرف سولفات آلومینیوم بکاهد.

پمپ تزریق مواد شیمیایی

پمپ تزریق مواد شیمیایی

پمپ های تزریق در صنعت تصفیه پساب

پمپ های تزریق آب برای انتقال آب، فاضلاب، روغن زباله و آب نمک و همچنین تزریق در اعماق زیر زمین به سیستم های متخلخل استفاده می شوند. تزریق می تواند به عنوان یک روش بازیافت روغن (EOR) در مخازنی که فشارها کاهش می یابد استفاده شود.

پمپ های دوز پیستون هیدرولیک

این پمپ ها به صورت هیدرولیکی هدایت می شوند و با مواد پلاستیکی مقاوم در برابر اکثر محصولات شیمیایی مورد استفاده در کاربردهای کشاورزی، دام و تصفیه آب تولید می شوند. این پمپ ها با دبی از 25 لیتر در ساعت به 500 لیتر در ساعت با فشار کاری از 1 تا 12 بار مورد استفاده قرار میگیرند. در ساخت آنها از مواد پلاستیکی مقاوم در برابر بیشتر محصولات شیمیایی مورد استفاده در کاربردهای کشاورزی ، دام و تصفیه آب استفاده شده است.

دوز پمپ های تزریق دیافراگم الکترومغناطیسی

این پمپ ها سنگین هستند و برای طیف وسیعی از کاربردها از جمله: تصفیه آب، فرآیندهای صنعتی، استخرها، زمین های گلف، پارک های ورزشی و کشاورزی ساخته شده است. پمپ های دوز دیافراگم الکترومغناطیسی برای جریان از 0.5 لیتر در ساعت به 9 لیتر در ساعت و حداکثر فشار کار تا 10 بارطراحی شده اند.

پمپ تزریق مواد شیمیایی

پمپ تزریق مواد شیمیایی

سیستم پمپ تزریق کلر

سیستم تزریق کلر به طور معمول برای ضد عفونی آب چاه است. همچنین این پمپ تزریق کلر می تواند سودا را تزریق کند تا pH را افزایش دهد. پمپ تزریق کلر به دلیل قابلیت اطمینان ، سهولت در نگهداری و قابلیت استفاده در طیف وسیعی از کاربردهای تصفیه آب مورد توجه متخصصان در سراسر جهان است. از سیستم تزریق کلر می توان برای کنترل بوی گوگرد استفاده کرد. اما آب را تمیز نمی کند. در صورت نیاز به حذف آهن و منگنز در آب، نمی توان از این روش استفاده کرد.
ویژگی های کلیدی پمپ های تزریق کلر
تطبیق پذیری: نرخ تغذیه جریان ورودی از 11.3 GPD تا 378.5 GPDدر فشارهای عملیاتی تا 100 psi.
هزینه پایین تعمیر و نگهداری
قابلیت اطمینان: طراحی شیر چهار توپی برای عملکرد آسان
طول عمر: بدون دیافراگم
ماندگاری: دارای محفظه مقاوم در برابر شعله مقاوم در برابر مواد شیمیایی.
نصب ساده: مونتاژ سوپاپ فشار برگشتی تزریق را با زاویه تضمین می کند و سیفون را مهار می ک
پمپ تزریق برای تزریق چه موادی استفاده می شود؟
پمپ تزریق با سرعت متغیر مایعات را با سرعت بسیار کم اما با فشار زیاد به داخل لوله آب هدایت می کند.این پمپ موادی به شرح زیر را به درون سیستم موذد نظر پیش میراند.
• کلر را برای از بین بردن باکتری ها یا اکسید کردن آهن یا سولفید هیدروژن
• خاکستر سودا را پمپ کرده تا pH آب اسیدی را افزایش دهد
• پلی فسفات را پمپ می کند تا آهن یا سختی آن “جدا شود”.
• پراکسید هیدروژن را پمپ می کند تا سولفید هیدروژن یا آهن اکسید شود.
• می تواند ترکیبی از مواد شیمیایی را تزریق کند، و این یک ابزار بسیار مفید برای تصفیه آب است که البته دارای چالش های متعددی است.

پمپ تزریق مواد شیمیایی

پمپ تزریق مواد شیمیایی

پمپ تزریق آب محور: بر پایه انرژی آب

پمپ تزریق غیر الکتریکی مواد شیمیایی مانند کلر، خاکستر سودا، پلی فسفات و پراکسید هیدروژن را در یک جریان آب فقط با استفاده از انرژی گرفته شده از خود آب جاری پمپ می کند. این پمپ به اتصال الکتریکی نیاز ندارد. این پمپ یک زائده سفید کوچک در پایین یک “موتور آب” بزرگ آبی است که برق را تأمین می کند. هنگامی که آب از طریق این موتورآبی جریان می یابد، موتور پمپ را که محلول تصفیه را از یک مخزن محلول زیر خود می گیرد و با فشار وارد خط آب می کند. این سیستم تزریق دارای مزیت تزریق با سرعتهای مختلف به یک جریان با سرعت جریان متفاوت است. هر چه تصفیه آب سریعتر اجرا شود، بیشتر ماده شیمیایی بیشتری تزریق می شود.
این پمپ یک فیدر بسیار سریع است و با نسبت 250 به 1 تزریق می کند. به ازای هر 250 گالن آب که از موتور آب عبور می کند ، پمپ یک گالن محلول تزریق می کند. این میزان تزریق زیاد به این معنی است که مواد شیمیایی متداول، مانند کلر، باید به شدت رقیق شوند تا از تصفیه بیش از حد جلوگیری شود، و برخی از مواد شیمیایی بسیار غلیظ ، مانند Spectraguard ، فقط با این پمپ کار می کنند. این پمپ های تزریقی اغلب پمپ های “اندازه گیری” نیز نامیده می شوند.

 

دستگاه های بازیابی انرژی در واحد های SWRO

دستگاه های بازیابی انرژی در واحد های SWRO

SWRO در حال حاضر شکل غالب تصفیه آب شیرین کن تجاری است. با این حال، انرژی مورد نیاز برای پمپاژ فشار بالا SWRO را به گزینه ای گران قیمت برای تولید آب آشامیدنی در مقایسه با گزینه های رایج مانند تصفیه آب سطحی و IPR تبدیل می کند.
اولین کارخانه بزرگ SWRO شهری در سال 1980 در جده، عربستان سعودی نصب شد. این واحد 8 کیلووات ساعت انرژی به ازای هر متر مکعب آب تولید شده مصرف کرد. این انرژی مصرف شده کمتر از نصف آنچه معمولاً توسط سایر فرآیندهای تقطیر معمولی مصرف می شد، بود. با این حال، فناوری شیرین سازی SWRO یک عیب دارد. آب دریا که قرار است شیرین سازی شود با کمک پمپ های فشار قوی تحت فشار قرار می گیرد. در طی این فرآیند مقدار زیادی انرژی مصرف می شود. پس از اتمام نمک زدایی، باقیمانده آب رد شده باید به عنوان زباله از بین برود. از آنجا که رد کردن آب نمک در این فرآیند فشار زیادی دارد، صرفاً ریختن آن به دریا اتلاف انرژی است. از این فشار می توان دوباره استفاده کرد و بنابراین می توان انرژی را بازیافت کرد. این ایده منجر به نوآوری دستگاه های بازیابی انرژی (ERD) شد که از اتلاف انرژی در فرآیند SWRO جلوگیری می کند. انرژی هیدرولیکی موجود در آب نمک رد شده با فشار زیاد را می توان با کمک ERD مورد استفاده مجدد قرار داد و بنابراین می توان مصرف انرژی را با مقادیر زیاد قابل توجهی کاهش داد. توسعه ERD ها در راه اندازی و بهره برداری از نیروگاه های SWRO در مقیاس بزرگ کمک کرده و دوام اقتصادی فرآیند نمک زدایی را تسهیل می کند. انرژی مورد نیاز نیروگاه های SWRO معمولی در حال حاضر به میزان 1.6 کیلووات ساعت در متر مکعب کم است، و این فرایند را نسبت به سایر فن آوری ها مقرون به صرفه تر و کارآمدتر می کند. حدود 80٪ از کل هزینه آب شیرین کن ناشی از مصرف انرژی و استهلاک سرمایه است. هزینه های باقیمانده با سایر عملیات نگهداری مانند جایگزینی غشاها و سایر اجزا، هزینه های مربوط به نیروی کار و غیره همراه است.

دستگاه های بازیابی انرژی در واحد های SWRO

دستگاه های بازیابی انرژی در واحد های SWRO

استفاده از سیستم های ERD در کاهش انرژی مصرفی واحد های SWRO

پمپاژ فشار بالا برای غلبه بر فشار اسمزی موجود در آب خوراک شور به یک جریان کنسانتره شور که بسیار تحت فشار است، نیاز دارد. ERD یا دستگاه های کاهنده انرژی معمولاً برای بازیابی این انرژی هیدرولیکی و انتقال آن به جریان تغذیه استفاده می شود، همچنین از میزان انرژی مورد نیاز نیروگاهها و هم از نیروگاه برق مورد نیاز می کاهد (Guirguis، 2011). اولین ERD های مورد استفاده در کارخانه های SWRO دستگاه هایی از نوع گریز از مرکز مانند Francis Turbine ، Pelton Wheel و Turbocharger بودند (Urrea و همکاران ، 2019). این دستگاه ها انرژی هیدرولیکی کنسانتره را به انرژی مکانیکی تبدیل می کنند تا یک پیستون یا پمپ را هدایت کند، که انرژی هیدرولیکی را دوباره به داخل خوراک منتقل می کند.

از حدود سال 2000 ، ERD های ایزوباریک جایگزین دستگاه های گریز از مرکز در بیشتر کارخانه های مدرن SWRO شده اند. ERD های ایزوباریک انرژی هیدرولیکی را از کنسانتره به طور مستقیم به خوراک منتقل می کنند، زیرا در این سیستم ها دو جریان مستقیم در تماس هستند (با حداقل مخلوط شدن). در نتیجه تبدیل انرژی منفرد، در مقایسه با ERD های گریز از مرکز، افت کارایی کاهش می یابد. دو نوع اصلی از اتاق ایزوباریک وجود دارد: چرخشی و پیستونی:
ERD های چرخشی شامل یک روتور مرکزی است که بر روی یاتاقان هیدرودینامیکی کار می کند که در آن خوراک با فشار کم و کنسانتره با فشار بالا جریان می بایند. روتور با خوراک فشار کم پر می شود، مهر و موم می شود، سپس کنسانتره فشار بالا وارد می شود، خوراک فشار کم را تحت فشار قرار می دهد ، و آن را به سمت غشای RO فشار می دهد. پس از آب بندی مجدد روتور، کنسانتره کم فشار حاصل از آن با تغذیه آب کم فشار ورودی جابجا شده و فرآیند تکرار می شود. (Pressure Exchangeبه دلیل فضای کم، دوام، طراحی مدولار و کارآیی، پرکاربردترین ERD دوار در کارخانه های SWRO مدرن است (Farooque et al.، 2004؛ Kadaj and Bosleman، 2018؛ Urrea et al.، 2019)
ERD های پیستونی فرآیند مشابه تبادل انرژی هیدرولیکی را دنبال می کنند، با انتقال انرژی بین کنسانتره و خوراک در داخل سیلندرهای هیدرولیک، با فرایند فشار متناوب / فشارزدایی متناوب وجود دارد که توسط دریچه های سوئیچ کنترل می شود. ERD های پیستونی نسبت به دستگاه های PX کم حجم و مدولار هستند و به دلیل نیاز به محرک های کنترل و شیرآلات به هزینه و نگهداری سرمایه بالاتری نیاز دارند (Guirguis، 2011).
بازده ERD (که عبارتست از تغییر در فشار جریان خوراک تقسیم بر تغییر در فشار کنسانتره) برای ERD های مختلف مشخص شده است که توربین 75٪ ، توربوشارژ 80٪ است، در حالی که اتاق های ایزوباریک حدود 95-97٪ هستند (کیم و همکاران ، 2019 ؛ Urrea و همکاران ، 2019). SEC برای نیروگاه های SWRO که در آن ERD های مختلف نصب شده است، گزارش شده است: توربین های Francis> 6 کیلووات ساعت در متر مکعب 3 ، چرخ های Pelton 3.5-5.9 کیلووات ساعت در متر مکعب 3 ، ERD های پیستون محور 3.5-4.6 کیلووات ساعت در متر مکعب 3 و PX.3 ۵ کیلووات ساعت در متر مکعب. PX در میزان بهبودی حداکثر تا 50٪ موثر است (Urrea و همکاران ، 2019). صرفه جویی در مصرف انرژی با بکارگیری سیستم ERD در مقایسه با سیستم های استاندارد SWRO می تواند در محدوده 25-40٪ باشد (Peñate و García-Rodríguez، 2011).
ERD های دوار مانند PX معمولاً به دلیل فشردگی و دوام دستگاه ترجیح داده می شوند، و با بازده 95-97٪ ، کار می کنند. پیشرفت های عمده در زمینه تولید ERD ها به حدی است که اکنون در کارخانه های SWRO امری عادی است و جدیدترین دستگاه های (ایزوباریک) با بازده 97٪ کار می کنند و به برخی از نیروگاه ها امکان دستیابی به ثبات 3 کیلووات ساعت در متر مکعب را می دهد و 10 برابر معمول تصفیه آب سطحی است. اگرچه ERD برای کارآمدتر و مقرون به صرفه تر کردن انرژی SWRO ضروری است، اما پیشرفت های آینده در فناوری ERD مزایای محدودی در کاهش بیشتر مصرف انرژی SWRO ایجاد می کند.

دستگاه های بازیابی انرژی در واحد های SWRO

دستگاه های بازیابی انرژی در واحد های SWRO

پیکربندی فرآیند RO در راستای کاهش مصرف انرژی

چندین پیکربندی فرآیند SWRO برای دستیابی به پیشرفتهایی در بهره وری انرژی و کیفیت آب تولید شده است.
Single pass RO یا اسمز معکوس تک پاس(شکل 1A) به دلیل سادگی، سهولت کارکرد و نسبتاً کم هزینه ، پیکربندی متداول و گسترده است. اسمز معکوس تک گذر با غلظت TDS بین 300 تا 500 میلی گرم بر لیتر نفوذ می کند و سرعت بهبودی آن تا 50 درصد است (Kim and Hong، 2018). در صورت نیاز به آب محصول با کیفیت بالاتر، ممکن است گذرگاه RO اضافی مورد نیاز باشد.
RO با دو پاس شامل یک واحد RO دوم به صورت سری است که برای رسیدن به کیفیت بهتر، جریان پرمیت از واحد اول را تصفیه می کند. انرژی اضافی (و هزینه) مورد نیاز برای اجرای RO دوم این گزینه را به طور کلی غیرقابل اجرا می کند (غفور و همکاران ، 2015).
RO با دو گذر /پاس جزئی (شکل 1 B) شامل تغذیه بخشی از نفوذ عبور اول از طریق RO دوم است ، در حالی که نفوذ باقیمانده RO را دور می زند و با نفوذ عبور دوم ترکیب می شود. SEC به نسبت جریان پرمیت تصفیه شده و عبور داده شده به نفوذ بستگی دارد (Du et al.، 2015). مطالعات نشان داده است که RO با یک گذر به طور کلی انرژی کمتری نسبت به گزینه های مختلف RO برای دو پاس نیاز دارد. در صورتي كه استانداردهاي كيفيت آب محصول از سختگيري بيشتري برخوردار باشد، به گذرگاه دوم نياز است. برای دو پیکربندی گذر RO مشخص شد که Spit Partial Second Pass RO کمترین انرژی را مصرف می کند. با این حال اشاره شده است که این یافته ها تنها نشان می دهد که چگونه می توان نیروگاه های SWRO را در محدوده گزارش شده در حال حاضر SEC بهینه سازی کرد.
گزارش شده است كه SSP باعث كاهش رسوب و افزايش عملكرد SWRO و همچنين كاهش مصرف انرژي و بهبود كيفيت نفوذ تا 15٪ در مقايسه با تك گذر معمولي مي شود (وارسينگر و همكاران ، 2016). با SPSP ، پرمیت فوروارد (TDS پایین) RO از گذر دوم عبور می کند، در حالی که جریان پرمیت بک وارد به گذرگاه دوم تغذیه می شود، پس از آن دو جریان پرمیت مخلوط می شوند. گزارش شده است که SPSP کمترین SEC را از دو تنظیمات عبور دارد (Du et al.، 2015). تنظیمات اضافی RO شامل عبور کنسانتره RO از واحد RO دیگر برای دستیابی به افزایش بازیابی وکاهش حجم کنسانتره، کاهش نیاز به اندازه واحد طراحی شده است. با این حال، SEC به دلیل فشار زیاد مورد نیاز در پاس دوم افزایش می یابد (Du et al.، 2015).
صرفه جویی در مصرف انرژی همچنین می تواند با گروه بندی اجزای کارخانه RO در سه بانک (خوراک فشار بالا؛ غشا؛ ؛ بازیابی انرژی)، که به عنوان “سه مرکز RO” شناخته می شود، به دست آید. این پیکربندی در کارخانه های بزرگ RO در استرالیا، اسرائیل وخاورمیانه به کار گرفته شده وتقاضای انرژی برای جریان های روزانه را کاهش می دهد (Voutchkov، 2018). با این وجود، در صورتی که SWRO فقط بخش کوچکی از تقاضای کل را تأمین کند، بنابراین برای کار در حالت دسته ای (جریان ثابت)، مانند مراکز آب شیرین کن که برای تکمیل منابع آب شیرین موجود استفاده می شود، سه مرکز طراحی فایده ای نخواهد داشت.

دستگاه های بازیابی انرژی در واحد های SWRO

دستگاه های بازیابی انرژی در واحد های SWRO

تنظیمات فرآیند ترکیبی

ادغام فناوری های شامل RO به خوبی تثبیت شده است. فن آوری های در حال ظهور مانند اسمز عقب مانده فشار (PRO) و اسمز رو به جلو (FO) برای بهینه سازی نمک زدایی آب دریا، کانون تحقیقات بسیاری بوده است (عواد و همکاران، 2019). PRO و FO هر دو با وارد كردن جریان پساب رقیق تر به فرآیند، برنامه های بالقوه ای در نمك زدایی SWRO دارند.
اسمز جلو یا فورارد اسمز
FO شامل انتقال غیرفعال مولکول های آب از طریق غشایی نیمه تراوا از خوراک رقیق تر به محلول کم رقت است. FO به جای وارد کردن فشار هیدرولیکی برای هدایت آب در جهت مخالف، به شیب فشار اسمزی بین دو محلول متکی است. محلول رقیق برای بازیابی آب شیرین را از محلول غلیظ تحت تصفیه می گیرد. غشاهای FO در مقایسه با RO تحت فشار هیدرولیکی کم و بدون فشار کار می کنند، بنابراین باعث کاهش مصرف انرژی می شوند. عدم پمپاژ منجر به کاهش تعلیق ذرات جامد می شود که احتمال رسوب زدگی را کاهش می دهد (Valladares Linares et al.، 2014؛ Awad et al.، 2019).
یک مانع عمده در برابر FO بازیابی محلول بسیار غلیظ و نیاز به انرژی مرتبط است (عواد و همکاران ، 2019). همچنین به تولید غشای دفع کننده نمک زیاد و شار بالا نیاز دارد (Valladares Linares و همکاران، 2014). غشاهای RO معمولی به دلیل قطبی شدن بالای غلظت ناشی از غلظت زیاد محلول، که می تواند منجر به رسوب زدایی غیر آلی شود، برای FO نامناسب هستند (Zheng، 2017). محلول غلیظ باید با دقت انتخاب شود تا اطمینان حاصل شود که غلظت و فشار اسمزی از خوراک بالاتر است و به گونه ای است که می توان آب شیرین را به راحتی از محلول کشش بازیابی کرد.
اگرچه استفاده از FO با نمک زدایی SWRO هنوز نتوانسته است به سودآوری تجاری دست یابد (Altaee et al.، 2018؛ Awad et al.، 2019 ، FO می تواند به عنوان پیش تصفیه نمک زدایی SWRO مورد استفاده قرار گیرد، با پتانسیل کاهش مصرف انرژی نرخ بازیابی را در مقایسه با فرآیندهای معمولی SWRO افزایش دهید.
غشای FO بسیار انتخابی، همراه با فرآیند بازیابی و بازسازی محلول کشش، خلوص محلول کشش را حفظ می کند. این میزان رسوب گذاری غشای RO را که تحت فشارهای هیدرولیکی بالایی است به حداقل می رساند و در غیر این صورت از کاهش شار و افزایش پمپاژ و انرژی ناشی از آن آسیب می بیند (Altaee et al.، 2018). رسوب کاهش یافته نیز به افزایش عمر غشا کمک می کند. برخی از اشکالات پیش تصفیه شامل هزینه سرمایه اضافی برای پمپاژ غشای اضافی (FO) و مواد شیمیایی مورد نیاز در مقایسه با RO معمولی است. مطالعات قبلی نشان داده است که مصرف انرژی برای شوری آب دریا زیر 35 گرم بر لیتر مطلوب نیست و FO فقط در صورت نصب ناکارآمد یا عدم استفاده از ERD می تواند باعث کاهش انرژی شود (Altaee et al.، 2018).
مزیت اصلی روش FO-RO این است که برای هدایت خوراک از طریق غشا RO به انرژی هیدرولیکی کمتری نیاز است. یکی از اصلی ترین اشکال ها وجود یک خوراک FO با غلظت کم مانند پساب تصفیه شده است که ممکن است با محل قرارگیری نمک زدایی در محل تصفیه خانه فاضلاب حاصل شود.

دستگاه های بازیابی انرژی در واحد های SWRO

دستگاه های بازیابی انرژی در واحد های SWRO

اسمز عقب مانده فشار PRO

فناوری PRO اولین بار در دهه 1970 در اسرائیل توسعه یافت (ساکای و همکاران ، 2016)، در ابتدا به عنوان یک فناوری تولید انرژی با استفاده از آب دریا، بدون آب شیرین کن RO راه اندازی شد. اولین نیروگاه عملیاتی PRO در نروژ آغاز به کار کرد، اما این نیروگاه در سال 2014 به دلیل عملکرد نامطلوب تعطیل شد (Altaee et al.، 2017).
PRO را می توان به عنوان RO-PRO در فرآیند SWRO ادغام کرد. کنسانتره RO بسیار شور حاوی انرژی اسمزی بالایی است. PRO با استفاده از غشایی نیمه تراوا، آب شیرین را از طریق انتقال غیرفعال آب از حلال جدا می کند. افزایش فشار اسمزی در سمت کشش با استفاده از ERD برداشت می شود. این انرژی می تواند برای جبران انرژی مورد نیاز برای پمپاژ فشار بالا استفاده شود. در حالی که چندین مطالعه نشان داده است که RO-PRO از لحاظ فنی مقرون به صرفه است، اما عملکرد و مزایای اقتصادی که هنوز تأیید نشده اند (Wan and Chung، 2018؛ Wang et al.، 2019). سیستم آبی Mega-ton در ژاپن یکی از تنها نیروگاه های مقیاس عملیاتی تا به امروز است که گزارش شده است که در یک آزمایش 12 ماهه احتمال کاهش 10٪ در SEC ، را داشته است.

دستگاه های بازیابی انرژی در واحد های SWRO

دستگاه های بازیابی انرژی در واحد های SWRO

چندین مطالعه نظری نشان داده است که RO-PRO می تواند به صرفه جویی در انرژی بیش از RO دست یابد (Wan and Chung، 2016، 2018؛ Li، 2017) به شرطی که نسبت بازیابی محدود باشد و واحد PRO دارای سطح غشای کافی باشد (Li، 2017؛ Wan and چونگ ، 2018). همچنین مشخص شد که پتانسیل بازیابی انرژی متناسب با شوری خوراک است (لی، 2017). علاوه بر صرفه جویی در هزینه بالقوه مرتبط با کاهش انرژی، بازیافت بخشی از کنسانتره RO از طریق PRO (“حلقه بسته” RO-PRO) می تواند هزینه سرمایه را به دلیل کاهش در مصرف آب دریا، واحدهای پیش تصفیه و تخلیه آب نمک به طور قابل توجهی کاهش دهد (وان و چونگ ، 2018). یکی دیگر از مزایای RO-PRO این است که کنسانتره RO تخلیه شده به سطح آب دریا رقیق می شود، و اثرات تخلیه را بر محیط زیست دریایی کاهش می دهد (Prante و همکاران ، 2014). چندین مانع برای زنده ماندن تجاری RO-PRO مشخص شده است. PRO مستعد ابتلا به رسوب زیاد است و نیاز به پیش تصفیه دارد (تلین و همکاران ، 2013 ؛ ژانگ و همکاران ، 2014).
پیکربندی های ترکیبی RO ، که به موجب آن SWRO با فن آوری اسمز عقب مانده فشار (PRO) یا اسمز رو به جلو (FO) ادغام شده است ، امکان کاهش قابل توجهی در انرژی کلی مورد نیاز را دارد: FO با کاهش انرژی پمپ مورد نیاز RO؛ PRO با برداشت و تبدیل انرژی اسمزی از کنسانتره RO به جبران پمپاژ RO. در حالی که تحقیقات نظری نشان می دهد تنظیمات ترکیبی RO می تواند به طور قابل توجهی SEC را کاهش دهد، اما مطالعات موردی در مقیاس عملیاتی برای حمایت از دوام تجاری هیبریدهای RO همچنان وجود دارد. موانع مشاهده شده شامل حساسیت PRO به رسوب دهی و جرم گیری، نواحی وسیع غشا مورد نیاز و در دسترس بودن یک جریان زباله رقیق مناسب است.
تحقیقات مداوم در مورد عملکرد غشا و پتانسیل ایجاد غشای مقاوم در برابر رسوب، دو روشی است که در آن هیبرید RO-PRO می تواند به یک واقعیت تجاری تبدیل شود. با تقاضای زیاد برای آب آشامیدنی در مناطقی که منابع آب شیرین مانند آب سطحی یا زیرزمینی ندارند، فن آوری های مختلف بالقوه برای رفع کمبود آب مورد بررسی قرار گرفته است. از زمان تاسیس ، فناوری SWRO جهش های بسیاری به سمت توسعه سیستم های کارآمد و پر بازده انرژی برداشته است. کاهش مصرف انرژی نیروگاه های نمک زدایی که مبتنی بر فناوری SWRO بودند، به عنوان محرک اصلی انقلاب فناوری در این زمینه ظاهر شد. بهبود عمر غشا و رد نمک، افزایش بازیابی و کاهش مصرف انرژی از معیارهای اصلی غربالگری از طریق فن آوری های موجود برای ترکیب در نیروگاه های نمک زدایی بوده است. از آن زمان، بسیاری از تحولات در این راستا رخ داده است. عمر غشا چند برابر شده است و مواد جامد در محصول اکنون به 100 میلی گرم در لیتر می رسند. علاوه بر این، بهبودهای 40-50٪ حاصل شده است. با بازیافت انرژی، بسیاری از نیروگاه های آب شیرین کن SWRO مصرف انرژی کل خود را به میزان قابل توجهی کاهش داده اند. اکنون با کمک دستگاه های بازیابی انرژی (ERD) می توان مصرف برق را کاهش داد و بهره وری نیروگاه آب شیرین کن اسمز معکوس آب دریا را افزایش داد.
تجزیه و تحلیل دستگاه های ایزوباریک در مقابل سانتریفیوژ نیز در این کار انجام شده است. مقایسه بین توربین بازیابی انرژی (ERT) تولید شده توسط Pump Engineering Inc. PEI و مبدل فشار (PX) تولید شده توسط سیستم های بازیابی انرژی (ERI) با استفاده از داده های جمع آوری شده از تجزیه و تحلیل آب ارائه شده و تولید کنندگان مربوطه انجام می شود. مشخصات دستگاه پیکربندی های مختلفی که برای این مقایسه به کار رفته است، برای کل تولید 240000 مترمربع در روز، به واحد آب شیرین کن SWRO جده اعمال شد. به عنوان یک نتیجه از این تجزیه و تحلیل ، مصرف انرژی خاص از تنظیمات ERT و PX به ترتیب 2.66 کیلووات ساعت در متر مکعب و 2.50 کیلووات ساعت در متر مکعب بود. با این حال تجزیه و تحلیل نشان می دهد که اگرچه پیکربندی PX بهترین مصرف انرژی خاص را به دست آورده است، به دلیل پایین بودن سرمایه و هزینه های نگهداری ، ERT از آن پسندیده است. بنابراین ، نتیجه نهایی این کار ، در این مورد خاص، مقرون به صرفه بودن پیکربندی ERT نسبت به پیکربندی PX است.

منابع

Abdelkareem, M. A., El Haj Assad, M., Sayed, E. T., and Soudan, B. (2018). Recent progress in the use of renewable energy sources to power water desalination plants. Desalination.
Altaee, A., Alanezi, A. A., and Hawari, A. H. (2018). Emerging Technologies for Sustainable Desalination Handbook – Chapter 2: Forward Osmosis Feasibility and Potential Future Application for Desalination.
Altaee, A., Zaragoza, G., Drioli, E., and Zhou, J. (2017). Evaluation the potential and energy efficiency of dual stage pressure retarded osmosis process. Appl. Energy.
Ang, W. L., Mohammad, A. W., Hilal, N., and Leo, C. P. (2015). A review on the applicability of intergrated/hybrid membrane processes in water treatment and desalination plants. Desalination.
Awad, A. M., Jalab, R., Minier-Matar, J., Adham, S., Nasser, S., and Judd, S. J. (2019). The status of forward osmosis technology implementation. Desalination.
Bhojwani, S., Topolski, K., Mukherjee, R., Sengupta, D., and El-Halwagi, M. M. (2019). Technology review and data analysis for cost assessment of water treatment systems. Sci. Total Environ.
Du, Y., Xie, L., Zhang, S., and Xu, Y. (2015). Optimization of reverse osmosis networks with split partial second pass design. Desalination.
Efraty, A. (2012). Closed circuit desalination series no-6: conventional RO compared with the conceptually different new closed circuit desalination technology. Desalin. Water Treat.
Ghaffour, N., Bundschuh, J., Mahmoudi, H., and Goosen, M. F. A. (2015). Renewable energy-driven desalination technologies: a comprehensive review on challenges and potential applications of integrated systems. Desalination.
Global Water Intelligence (GWI) (2016). IDA Desalination Yearbook 2016–2017, Water Desalination Report.
Gude, V. G. (2018). Sustainable Desalination Handbook—Plant Selection, Design and Implementation.
Guirguis, M. J. (2011). Energy Recovery Devices in Seawater Reverse Osmosis Desalination Plants with Emphasis on Efficiency and Economical Analysis of Isobaric versus Centrifugal Devices. Tampa, FL: University of South Florida.
Hailemariam, R. H., Woo, Y. C., Damtie, M. M., Kim, B. C., Park, K-D., and Choi, J-S. (2020). Reverse osmosis membrane fabrication and modification technologies and future trends: a review. Adv. Coll. Interface Sci.
Heihsel, M., Lenzen, M., Malik, A., and Geschke, A. (2019). The caron footprint of desalination–an input-output analysis of seawater reverse osmosis desalination in Australia for 2005–2015. Desalination.
Hermony, A., Sutzkover-Gutman, I., Talmi, Y., and Fine, O. (2014). Palmachim Seawater desalination plant—seven years of expansions with uninterrupted operation together with process improvements. Desalin. Water Treat.
Kadaj, E., and Bosleman, R. (2018). “Energy recovery devices in membrane desalination processes,” in Renewable Energy Powered Desalination Handbook: Application and Thermodynamics.
Karabelas, A. J., Koutsou, C. P., Kostoglou, M., and Sioutopoulos, D. C. (2018). Analysis of specific energy consumption in reverse osmosis desalination processes. Desalination.
Khan, M. A. M., Rehman, S., and Al-Sulaiman, F. A. (2018). A hybrid renewable energy system as a potential energy source for water desalination using reverse osmosis: a review. Renew. Sustain. Energy Rev.
Khan, S. U., Khan, S. U., Danish, S. N., Orfi, J., Rana, U. A., and Haider, S. (2018). “Nuclear energy powered Seawater Desalination,” in Renewable Energy Powered Desalination Handbook–Application and Thermodynamics.
Kim, J., and Hong, S. (2018). A novel single-pass reverse osmosis configuration for high-purity water production and low energy consumption in seawater desalination. Desalination.
Kim, J., Park, K., Yang, D. R., and Hong, S. (2019). A comprehensive review of energy consumption of seawater reverse osmosis desalination plants. Appl. Energy.
Kurihara, M., and Takeuchi, H. (2018). SWRO-PRO System in “Mega-ton Water System” for energy reduction and low environmental impact. Water.
Li, M. (2017). Reducing specific energy consumption of seawater desalination: staged RO or RO-PRO? Desalination.
Mekonnen, M. M., and Hoekstra, A. Y. (2016). Four billion people facing severe water scarcity. Sci. Adv.
Park, K., Kim, J., Yang, D. R., and Hong, S. (2020). Towards a low-energy seawater reverse osmosis desalination plant: a review and theoretical analysis for future directions. J. Membrane Sci.
Peñate, B., and García-Rodríguez, L. (2011). Energy optimisation of existing SWRO (seawater reverse osmosis) plants with ERT (energy recovery turbines): technical and thermoeconomic assessment. Energy.
Peñate, B., and García-Rodríguez, L. (2012). Current trends and future prospects in the design of seawater reverse osmosis desalination technology. Desalination.
Prante, J. L., Ruskowitz, J. A., Childress, A. E., and Achilli, A. (2014). RO-PRO desalination: an integrated low-energy approach to seawater desalination. Appl. Energy.
Ramato, A. T., Noviello, Y., Di Profio, G., Macedonio, F., Ali, A., Drioli, E., et al. (2019). Integrated membrane distillation-reverse electrodialysis system for energy efficient seawater desalination. Appl. Energy.
Sakai, H., Ueyama, T., Irie, M., Matsuyama, K., Tanioka, A., Saito, K., et al. (2016). Energy recovery by PRO in sea water desalination plant. Desalination.
Shemer, H., and Semiat, R. (2017). Sustainable RO desalination—energy demand and environmental impact. Desalination.
Urrea, S. A., Reyes, F. D., Suárez, B. P., and de la Fuente Bencomo, J. A. (2019). Technical review, evaluation and efficiency of energy recovery devices installed in the Canary Islands desalination plants. Desalination.
Valladares Linares, R., Li, Z., Sarp, S., Bucs, S. S., Amy, G., and Vrouwenvelder, J. S. (2014). Forward osmosis niches in seawater desalination and wastewater reuse. Water Res.
Voutchkov, N. (2018). Energy use for membrane seawater desalination—current status and trends. Desalination.
Wan, C. F., and Chung, T. S. (2016). Energy recovery by pressure retarded osmosis (PRO) in SWRO–PRO integrated processes. Appl. Energy .
Wan, C. F., and Chung, T. S. (2018). Techno-economic evaluation of various RO+PRO and RO+FO integrated processes. Appl. Energy.
Wang, Q., Zhou, Z., Li, J., Tang, Q., and Hu, Y. (2019). Investigation of the reduced specific energy consumption of the RO-PRO hybrid system based on temperature-enhanced pressure retarded osmosis. J. Membrane Sc

CIP رسوب گرفتگی ممبران اسمز معکوسRO عمران سازان مهاب

گرفتگی غشاها در سیستم های اسمز معکوس و راه های مقابله و جلوگیری از آن

رسوبگذاری در غشا یک عیب اجتناب ناپذیر در اسمز معکوس (RO) برای احیای فاضلاب است. به منظور روشن شدن روند گسترش رسوب دهی درغشا، در یک مطالعه تکنیکی و فنی تمامی غشاهای رسوب دار در امتداد کانال خوراک یک سیستم RO در مقیاس صنعتی برای احیای فاضلاب (شش عنصر در هر مرحله) کالبدشکافی و تجزیه و تحلیل شد.
نتایج بدست آمده نشان داد، شار آب و راندمان رد نمک از غشای رسوب زده در سر و انتهای غشا در بین 12 عنصر کمترین بود. گزارش شده عمدتا این رسوب ها از پروتئین ها، پلی ساکاریدها و اسید فولویک تشکیل شده است. غلظت ATP از مواد رساننده بر روی عناصر غشاهای اول و دوازدهم بسیار بیشتر از عناصر دیگر بود، که نشان دهنده سوخت زیستی شدید است. اگرچه میکروب ها به دلیل تولید مواد پلیمری خارج سلولی می توانند باعث رسوب زدگی آلی شوند، اما در این مطالعه هیچ ارتباط روشنی بین رسوب آلی و بیوفولینگ یافت نشد. به عنوان مثال ، اثر غلظت ATP بر روی عنصر دوم و عنصر هفتم مشابه بود، در نتیجه میزان مشابهی از biofouling را نشان داد، اما رسوب آلی عنصر دوم مقایسه با عنصر هفتم نسبتاً کم بود. تقریباً 70٪ از عناصر فلزی، عمدتا Fe ، روی عنصر اول رسوب می کنند. اگرچه غلظت آهن در آب خوراک بسیار کمتر از کلسیم و منیزیم بود، غلظت آهن در سه عنصر اول به طور قابل توجهی بالاتر از هر عنصر دیگر بود ، که نشان می دهد آهن با سهولت بیشتری بر روی غشاهای RO رسوب می کند.

 

CIP رسوب گرفتگی ممبران اسمز معکوسRO عمران سازان مهاب

CIP رسوب گرفتگی ممبران اسمز معکوسRO عمران سازان مهاب

روش های پاکسازی غشا در RO

در یک بررسی دیگر، رسوب زدایی و تمیز کردن غشا در سه واحد اسمز معکوس (RO) مورد مطالعه قرار گرفت. این نمونه ها شامل آب خوراک پساب فاضلاب ثانویه، آب رودخانه و آب سطحی بود. کالبد شکافی غشایی برای خصوصیات رسوب استفاده شد. اندازه گیری لایه های فاولینگ شامل کل کربن آلی (TOC) ، آدنوزین تری فسفات، پلی ساکاریدها، پروتئین ها و صفحات هتروتروف بود. در همه مکان ها، رسوبگذاری غشا و اسپیسر (بیو) آلی بود. روش های تمیز کردن استاندارد با دو روش تمیز کردن که به طور خاص برای حذف (بیو) رسوب آلی با استفاده از پاک کننده های ترکیبی تجاری (مخلوط مواد فعال) سازگار شده است، مقایسه شد. سه سیستم RO تحت تأثیر رسوبات غیر قابل برگشت قرار گرفتند که باعث کاهش دائمی عملکرد در افت فشار نرمال و نفوذ پذیری آب حتی پس از تمیز کردن کامل شیمیایی می شود. نتایج نشان داد روش های تمیزکاری ، میانگین TOC را با حداکثر 80 ~ به میزان 45٪ کاهش داد. به طور کلی ، با روش انطباق یافته I در مقایسه با روش تطبیق یافته II ، می توان 20 درصد حذف زیست توده بالاتر را به دست آورد. اندازه گیری های TOC و SEM نشان داد که هیچ یک از روش های تمیزکاری اعمال شده نمی تواند مواد گل آلوده را به طور کامل از عناصر غشا پاک کند. این مطالعه بر نیاز به روشهای تمیز کردن جدید برای هدف قرار دادن رسوبات مقاوم تأکید دارد ، زیرا هیچ یک از روشهای اعمال شده منجر به بازسازی غشای بسیار موثر نمی شود.

استفاده از روش CIP در پاکسازی غشاهای سیستم RO

یکی از مهمترین نگرانیهای مربوط به عملکرد RO ، کاهش عملکرد غشا توسط رسوب است. بیوفولینگ، رایج ترین نوع رسوب زدگی غشایی، نوعی رسوب گذاری است که کنترل آن سخت تر است. افزایش افت فشار کانال تغذیه نرمال (NPD) بر روی کانال فاصله دهنده تغذیه، کاهش نفوذ پذیری آب نرمال شده ویا تغییر در احتباس نمک از شاخص های اصلی عملکرد کلیدی عملیاتی است که توسعه رسوب در برنامه های کاربردی در مقیاس کامل را نشان می دهد. بیوفولینگ سریع به طور معمول در ماژول های مرحله اول آشکار می شود، که باعث افزایش شدید NPD شود، در حالی که بیوفولینگ آهسته ممکن است در کل واحد آشکار شود. به ندرت ، سوخت زیستی در سایر قسمتهای نصب مانند آخرین المان ها مشاهده می شود.

برای غلبه بر مشکلات رسوب، تمیز کردن شیمیایی در محل (CIP)

برای غلبه بر مشکلات رسوب، تمیز کردن شیمیایی در محل (CIP)

برای غلبه بر مشکلات رسوب، تمیز کردن شیمیایی در محل (CIP) برای بازگرداندن عملکرد اصلی RO از نظر NPD و ظرفیت رد نمک نرمال اعمال می شود. به طور کلی CIP های اسیدی-بازی اغلب قادر به بازیابی کامل عملکرد RO و حذف تمام رسوبات از عناصر غشا نیستند. اگر عملکرد غشا تا یک سطح مشخص تعریف شده قابل بازیابی نباشد ، کارخانه RO بطور مداوم با مشکلات رسوب کار می کند.
CIP برای صنعت غشا اجتناب ناپذیر است. هزینه های تمیز کردن عناصر غشایی می تواند تا 50٪ از کل هزینه های عملیاتی RO را اضافه کند. بازده CIP شدیداً به واکنشهای شیمیایی بین رسوبات و سطح غشا و همچنین واکنشهای بین مواد رساننده و مواد شیمیایی بستگی دارد که شامل هیدرولیز، پپتیزاسیون، صابون سازی، محلول سازی، پراکندگی و کلاته می شود. دسته های مختلفی از عوامل تمیز کنندگی مانند محلول های قلیایی، اسیدها، مواد شیمیایی فلزات، سورفاکتانت ها، آنزیم ها و عوامل اکسید کننده وجود دارد. علاوه بر این، ترکیبات تجاری فعال مواد شیمیایی در دسترس است، اما تولید کنندگان اغلب ترکیب دقیق را نشان نمی دهند. عوامل تمیز کننده شیمیایی به طور خاص عمل می کنند و انتخاب روش CIP باید به ترکیب رسوب دهی منفرد بستگی داشته باشد. به عنوان مثال محلولهای قلیایی، از طریق هیدرولیز و محلول سازی پی در پی، مواد نسبی آلی موجود در غشا را از بین می برد. عوامل کیلیت فلزی به طور خاص کاتیون های دو ظرفیتی را از مولکول های پیچیده (به عنوان مثال ، مواد پلیمری خارج سلول) حذف می کنند و به همین ترتیب یکپارچگی ساختاری ماتریس لایه رسوب را تضعیف می کنند. سورفاکتانت ها با تشکیل میسل در اطراف آنها، ماکرومولکول ها را حل می کنند و در نتیجه حذف پلان ها از سطح غشا را تسهیل می کنند. تمیز کردن با اسید مشکل پوسته پوسته شدن را حل می کند و یکپارچگی دیواره سلولی میکروارگانیسم ها را از بین می برد و پروتئین ها را رسوب می دهد. عوامل اکسید کننده، مانند پراکسید هیدروژن، قادر به اکسید کردن مواد آلی طبیعی (NOM) هستند و به عنوان بیوسید عمل می کنند و می توانند با افزایش مقدار گروههای عملکردی حاوی اکسیژن مانند گروههای کربوکسیل و فنلی، آب دوستی را افزایش دهند.

پارامترهای عملیاتی مانند مدت زمان ، دما ، تنش برشی و فشار نیز تأثیر قابل توجهی بر کارایی تمیز کردن دارند. چرخه های فیلتراسیون کوتاه (به عنوان مثال ، روش تمیز کردن مکرر اما کوتاه تر) مفید هستند، زیرا لایه های رسوب باگذشت زمان جمع و جورتر می شوند و برداشتن آنها دشوارتر می شود. به طور کلی، کارایی تمیز کردن با افزایش دما افزایش می یابد، اما تحمل گرما در غشا باید در نظر گرفته شود. به نظر می رسد که مواد جداکننده خوراک در غشاهای مارپیچی ، کارایی حذف فولانت را محدود می کند. به هر حال، در صورت وجود یک واکنش شیمیایی مطلوب بین ماده تمیز کننده و پاک کننده ، بهینه سازی شرایط تمیز کردن مانند دما ، pH ، مدت زمان تمیز کردن و سرعت می تواند منجر به افزایش بازده CIP شود.

روش های کنترل رسوب در غشاهای اسمز معکوس

CIP همچنان یکی از گلوگاه های مهم در عملکرد پایدار کارخانه های تمام عیار RO است. بنابراین، اجتناب از سوخت زیستی عامل بسیار مهمی در یک رویکرد موثر پیشگیری و کنترل رسوب است. پیشگیری از بیوفولینگ ممکن است با استفاده از پیش تصفیه بیش از حد یا استفاده از بیوسیدها حاصل شود. با این حال، تنها مواد فعال زیست کش که به طور رسمی توسط اکثر تولید کنندگان RO تأیید می شوند، به 2،2-دیبرومو-3-نیتریلوپروپیونامید (DBNPA) و کلرومتتیلیوزوتیزولون / متیلیزوتیازازولون (CMIT / MIT) محدود می شوند. بیوسیدها و همچنین مواد شیمیایی تمیز کننده باید با تمام مواد یک عنصر RO سازگاری کامل داشته باشند و باید سریع عمل کنند. بیوسیدهای باند پهن با ویژگی های پراکندگی بیوفیلم (به عنوان مثال ، دی اکسید کلر) ممکن است گزینه های امیدوار کننده ای باشند اما هیچ تأیید رسمی از تولید کنندگان غشا ندارند.

استفاده از روش ترکیبی مکانیکی – شیمیایی در تمیز کردن غشاها

با توجه به اینکه CIP های اسید و باز سنتی نتوانستند به طور کامل عملکرد RO را بازیابی کنند و تمام رسوبات را از عناصر غشا پاک کنند. رویکردهای جایگزینی روش های ترکیبی بجای CIP کلاسیک، مانند تمیز کردن دو فازی، پیش از بکارگیری باید عمیق تر مورد بررسی و تأیید سازندگان غشا قرار گیرد، زیرا اعتقاد بر این است که ترکیب تمیز کردن شیمیایی و تمیز کردن مکانیکی، کارایی CIP را بهبود می بخشد. علاوه بر این، تحقیق و توسعه باید بر روی پیشرفت در ساخت عناصر غشایی و ساخت و طراحی غشاهای RO با مقاومت شیمیایی بهبود یافته در برابر اکسید کننده های سموم و سایر مواد شیمیایی فعال مورد استفاده جهت کنترل و پبشگیری از تجمع رسوب متمرکز شود.
آزمایش های تمیز کردن مقایسه ای انجام شده در یک آزمایشگاه نشان دادکه حتی با استفاده از روش های خاص رسوب زدایی بیولوژیکی (آلی) ، رسوب های آلی پیر و مداوم (زیستی) به طور کامل از سطح غشا و فاصله دهنده های غشا پاک نشده اند. سلول های جریان متقابل می توانند ابزاری مفید برای آزمایش مقایسه ای مواد شیمیایی تمیز کننده و روش های CIP باشند، زیرا نمایشی مناسب از فعل و انفعالات فیزیکی پیچیده در طول CIP را ارائه می دهند. از تنظیمات آزمایشگاهی می توان برای دستیابی به پارامترهای مهم CIP مانند حذف فولانت یا یکپارچگی غشا استفاده کرد.

مشکل پوسته پوسته شدن

پوسته پوسته شدن به معنای رسوب ذرات بر روی یک غشا و چسبیدن به آن است. این یک اثر ناخواسته است که می تواند در طی فرآیند های فیلتراسیون نانو و اسمز معکوس رخ دهد. اسکالینگ باعث استفاده بیشتر از انرژی و طول عمر کوتاهتر غشاها می شود، زیرا این موارد بیشتر به تمیز کردن نیاز دارند.
فیلتراسیون نانو و اسمز معکوس فرایندهایی هستند که اغلب برای تهیه آب آشامیدنی از آبهای زیرزمینی یا سطحی استفاده می شوند. در طی این فرآیندها یک حجم تبدیل بالا مورد نظر است، زیرا این امر باعث کاهش اتلاف مواد اولیه و انرژی می شود. حدود 75 تا 90 درصد آب خوراک در این نوع فرایندها به محصول مورد نظر تبدیل می شود. در طی فرآیند، کنسانتره غشایی نمک ها را جذب می کند. نمکهای غیرآلی، مانند کربنات کلسیم و سولفات باریم، که در آب محلول نیستند، می توانند بیش از حد اشباع شوند. این باعث رسوب آنها می شود. احتمال افزایش نمک های محلول در آب در غشا در چنین حالتی هنگام تبدیل زیاد است.
همچنین اسکالینگ باعث کاهش شار اسمی می شود. از پیامد های این پدیده استفاده بیشتر از انرژی، افزایش دوره تناوب تمیز کردن و طول عمر کوتاهتر غشاها است. این امر باعث می شود که فرآیند تصفیه آب غشایی بسیار گران شود. افزودن اسیدها یا مواد ضد رسوب به سیستم می تواند از رسوب نمک جلوگیری کند. اسیدها اشباع بیش از حد کربنات کلسیم را کاهش می دهند. یک واحد فیلتراسیون غشایی در حداکثر تبدیل و حداقل دوز اسیدها و ضد مقیاس، بدون وقوع پوسته پوسته شدن ، عملکرد بهینه ای دارد.

برای غلبه بر مشکلات رسوب، تمیز کردن شیمیایی در محل (CIP)

برای غلبه بر مشکلات رسوب، تمیز کردن شیمیایی در محل (CIP)

 

بیوفولینگ

آلودگی بیولوژیکی، معروف به سوخت زیستی، اغلب در طی فرآیند های فیلتراسیون نانو و اسمز معکوس رخ می دهد. دلیل این امر آن است که غشاها با کلر ضد عفونی نمی شوند تا باکتری ها از بین بروند. سوخت زیستی در غشا های تصفیه نانو یا اسمز معکوس احتمالاً کمترین آلودگی قابل درک در سیستمهای غشایی است. این را می توان به رشد پیچیده باکتری ها نسبت داد. اثرات مخرب این میکروارگانیسم ها، بر روی فیلترهای نانو و سیستم های اسمز معکوس غالباً غیرقابل جبران می باشد.
انواع میکروارگانیسم ها، فاکتورهای رشد و غلظت آنها در یک سیستم غشایی به شدت به عوامل حیاتی مانند دما، وجود نور خورشید ، pH ، غلظت اکسیژن محلول و وجود مواد مغذی آلی و غیر آلی بستگی دارد. این میکروارگانیسم ها می توانند از طریق آب یا هوا یا هر دو وارد سیستم شوند. باکتری های هوازی معمولاً در محیطی با آب گرم، کم عمق و در معرض خورشید، با محتوای اکسیژن محلول زیاد و اسیدیته 6.5 تا 8.5 و مقدار زیادی مواد مغذی آلی و معدنی زندگی می کنند.
همانطورکه جریان پرمیت از طریق غشا خارج می شود، تمام ناخالصی ها در نزدیکی سطح غشا باقی می مانند. لایه آب کنار سطح غشا (لایه مرزی) به طور فزاینده ای در مواد محلول و معلق متمرکز می شود. این غلظت ها بسته به سرعت تغذیه، بازیابی عناصر و شار نفوذ غشا به یک سطح ثابت خاص می رسند.
رعایت توصیه های سازنده غشا در مورد حداقل جریان تغذیه، حداکثر بازیابی عنصر و حداکثر شار عنصر مهم است. این توصیه ها بر اساس اندازه عنصر و کیفیت آب خوراک تصفیه شده است. غلظت مواد جامد محلول و معلق در لایه مرزی عملکرد غشا را کنترل می کند. غلظت های بالاتر به معنی فشار اسمزی بالاتر، تمایل بیشتر مواد معلق به لخته شدن و پوشاندن سطح غشا و احتمال وقوع پوسته پوسته شدن بیشتر است. حفظ شرایط عملیاتی مناسب برای غشا گام اصلی پیشگیری برای به حداقل رساندن رسوب گذاری غشا است. پوسته پوسته شدن به معنای رسوب ذرات بر روی یک غشا و وصل شدن آن است. این یک اثر ناخواسته است که می تواند در طی فیلتراسیون نانو و فرآیندهای اسمز معکوس رخ دهد. مقیاس گذاری باعث استفاده بیشتر از انرژی و طول عمر کوتاهتر غشاها می شود، زیرا این موارد بیشتر به تمیز کردن نیاز دارند. فیلتراسیون نانو و اسمز معکوس فرایندهایی هستند که اغلب برای تهیه آب آشامیدنی از آبهای زیرزمینی یا سطحی استفاده می شوند. در طی این فرآیندها یک تبدیل بالا مورد نظر است، زیرا این امر باعث کاهش اتلاف مواد اولیه و انرژی می شود. در طی فرآیند، کنسانتره غشایی نمک ها را جذب می کند. نمک های غیرآلی ، مانند کربنات کلسیم و سولفات باریم، که در آب محلول نیستند، می توانند بیش از حد اشباع شوند. این باعث رسوب آنها می شود. احتمال افزایش نمک های محلول در آب در غشا هنگام تبدیل زیاد است.
مقیاس گذاری باعث کاهش شار اسمی نیز می شود. همانطور که قبلاً اشاره شد، استفاده بیشتر از انرژی، افزایش فرکانس تمیز کردن دلیل طول عمر کوتاهتر غشاها است. این امر باعث می شود فرآیند تصفیه آب غشایی بسیار گران شود. افزودن اسیدها یا مواد ضد رسوب به سیستم می تواند از رسوب نمک جلوگیری کند. اسیدها اشباع بیش از حد کربنات کلسیم را کاهش می دهند، در حالی که ضد رسوبات میزان فولینگ را کاهش می دهند. یک واحد فیلتراسیون غشایی در حداکثر تبدیل و حداقل دوز اسیدها و ضد رسوبات ، بدون وقوع پوسته پوسته شدن ، عملکرد بهینه ای دارد.

CIP رسوب گرفتگی ممبران اسمز معکوسRO عمران سازان مهاب

CIP رسوب گرفتگی ممبران اسمز معکوسRO عمران سازان مهاب

بیوفولینگ

آلودگی بیولوژیکی، معروف به سوخت زیستی ، اغلب در طی فرآیند های فیلتراسیون نانو و اسمز معکوس رخ می دهد. دلیل این امر آنست که غشاها با کلر ضد عفونی نمی شوند تا باکتری ها از بین بروند. سوخت زیستی در غشاهای تصفیه نانو یا اسمز معکوس احتمالاً کمترین آلودگی قابل درک در سیستمهای غشایی است. این را می توان به رشد پیچیده باکتری های میکروبیولوژیک نسبت داد. این میکروارگانیسم ها اثرات مخرب، غالباً غیرقابل جبرانی بر روی فیلترهای نانو و سیستم های اسمز معکوس دارند.
انواع میکروارگانیسم ها ، فاکتورهای رشد و غلظت آنها در سیستم غشایی به شدت به عوامل حیاتی، از جمله دما، وجود نور خورشید ، pH ، غلظت اکسیژن محلول و وجود مواد مغذی آلی و غیر آلی بستگی دارد. میکروارگانیسم ها می توانند از طریق آب یا هوا یا هر دو وارد سیستم شوند. باکتری های هوازی معمولاً در محیطی با آب گرم، کم عمق و در معرض خورشید، با محتوای اکسیژن محلول بالا، pH 8.5 تا 6.5 و مقدار زیادی مواد مغذی آلی و معدنی زندگی می کنند. از طرف دیگر، باکتریهای بی هوازی معمولاً در سیستمهای بسته با اکسیژن محلول کم وجود دارند و در صورت وجود مقدار کافی مواد مغذی فعال می شوند. هر دو نوع باکتری می توانند در یک سیستم وجود داشته باشند. باکتری هایی وجود دارند که می توانند بین شرایط هوازی و هوازی جابجا شوند و بالعکس. ماهیت آنها به وضعیت آب بستگی دارد.
یکی از فراوانترین انواع سوختهای زیستی در طی پیش تصفیه سیستمهای اسمز معکوس و در قسمتهایی از سیستمهای غشایی ایجاد می شود که می تواند رشد جلبکها را تقویت کند. قطعات سیستم غشایی که در معرض نور خورشید هستند یا حاوی آب ساکن هستند می توانند باعث گسترش رشد جلبک ها شوند.
نور خورشید نقش مهمی در روند فتوسنتز برای رشد جلبک ها دارد. میزان نور خورشید میزان اکسیژن تولید شده را تعیین می کند. باکتری های هوازی که وابسته به اکسیژن هستند ، وقتی اکسیژن محلول در آب خوراک به مقدار لازم برای انجام متابولیسم کافی نباشد، به اکسیژن تولید شده توسط جلبک ها نیاز دارند. در حالی که جلبک ها از بین می روند، آنها به یک منبع غذایی برای باکتری ها تبدیل می شوند، زیرا مواد مغذی آلی را که باکتری ها برای رشد در سیستم غشایی نیاز دارند آزاد می کنند.

CIP رسوب گرفتگی ممبران اسمز معکوسRO عمران سازان مهاب

CIP رسوب گرفتگی ممبران اسمز معکوسRO عمران سازان مهاب

نوع دیگر سوخت زیستی در سیستم غشایی، اتصال باکتری ها به دیواره های داخلی خطوط لوله است. گوشه ها و بن بست ها مکان هایی در یک خط لوله هستند که باکتری ها می توانند به آنها جذب شوند. پس از جذب باکتری ها به دیواره، اولین قسمت های یک فیلم زیستی تشکیل می شود. در حالی که باکتری ها همچنان تکثیر می شوند و مواد آلی مرده به ساختارهای فیلم بیو جذب می شوند، اندازه این فیلم زیستی افزایش می یابد. علی رغم این واقعیت که فیلم های زیستی جریان آب را تحت تأثیر قرار می دهند، هنوز هم مواد معلق کوچک و میکروارگانیسم ها را به خود جلب می کند. رسوبات فیلم زیستی به یک بستر منسجم و قوی تبدیل می شود که حذف آن بسیار سخت است. در نهایت ، بخشهایی از فیلم زیستی آزاد و از طریق اجزای سیستم، از جمله غشاها پخش می شود. هنگامی که آنها به غشا متصل می شوند، میکروارگانیسم ها با استفاده از مواد مغذی موجود در آب خام ورودی، شروع به تکثیر می کنند. در نتیجه یک فیلم زیستی بر روی غشاها ایجاد می شود که جریان آب خوراک را از طریق غشا مسدود می کند. این منجر به فشار بالاتر می شود، که باعث افزایش هزینه های سیستم و آسیب جبران ناپذیر به غشاها می شود.

حتی این اتفاق می افتد که برخی از مواد غشایی محیط مناسبی برای رشد میکروارگانیسم ها هستند، که باعث می شود غشا در مدت زمان کوتاهی به طور کامل از بین برود. از طرف دیگر، باکتریهای بی هوازی معمولاً در سیستمهای بسته با اکسیژن محلول وجود دارند.

 

رسوبات موثر در کاهش عمر غشاهای RO

رسوب دهی در غشا یک نقص مهم در کاهش کارایی و کاربرد گسترده فناوری اسمز معکوس (RO) است. در یک مطالعه فنی، غشاهای RO در یک کارخانه احیا فاضلاب شهری کالبدشکافی شد. بررسی ها نشان داد که ناخالصی های یونی در کنسانتره RO منجر به پوسته پوسته شدن جدی در غشاهای RO نشد، که با برخی تحقیقات دیگر در تضاد بود. آهن، کلسیم و منیزیم عناصر اصلی غیر آلی هستند. آهن غلظت نسبتاً کمی در نفوذ RO داشت اما بیشترین میزان آن در غشا بود. با این حال، هیچ پیش تصفیه خاصی از نظر حذف آهن وجود نداشت. مقیاس گذاری کلسیم و منیزیم توسط مواد ضد پاششی تزریق شده کنترل شد. رسوب آلی به دلیل مقدار زیادی مواد آلی محلول در پساب ثانویه، مشکل اصلی غشاهای RO بود. کسر اسید آب دوست (HIA ، 48.0٪ از کل DOC)، اسید آبگریز (HOA ، 23.6٪) و کسر خنثی آبگریز (HON ، 19.0٪) کسر بزرگترین در میان شش بخش در ورودی RO بودند.

انواع رسوب غشایی

آلودگی غشایی هنگامی رخ می دهد که آلودگی ها در سطح یا منافذ غشای فیلتراسیون جمع شوند. فولانت ها جریان آب را از طریق غشا محدود می کنند، در نتیجه عواقب مختلفی از جمله مقاومت هیدرولیکی بالاتر، مصرف انرژی بیشتر و حتی آسیب رساندن به غشا و سایر اجزای سیستم ایجاد می شود. انواع رسوب زدایی غالباً با توجه به نوع رسوبات موجود در جریان تغذیه ای تعریف می شود که می تواند شامل رسوب ذرات معلق / کلوئیدی ، رسوب بیولوژیکی / میکروبی و رسوب آلی باشد. هر یک از این انواع رسوب گذاری می تواند برگشت پذیر باشد. مثلاً وقتی پلانت ها از نظر شیمیایی با مواد غشایی پیوند می خورند و عملکرد آن را به طور دائمی به خطر می اندازند . انواع عمده مواد آلاینده غشایی عبارتند از :

 

CIP رسوب گرفتگی ممبران اسمز معکوسRO عمران سازان مهاب

CIP رسوب گرفتگی ممبران اسمز معکوسRO عمران سازان مهاب

رسوب ذرات و کلوئید

رسوب ذرات هنگامی رخ می دهد که مواد جامد معلق و یا مواد کلوئیدی سوراخ های یک غشا را مسدود یا به سطح آن بچسبند. با جمع شدن ذرات بر روی غشا، ، آنها به عنوان لایه “کیک” شناخته می شوند که مانع جریان آب در منافذ غشا می شوند و در نتیجه علائمی مانند افزایش اندازه گیری های دیفرانسیل فشار و افزایش مصرف انرژی ایجاد می شود.
رسوب گذاری ذرات معلق / کلوئید به دلیل وجود ذرات غیر بیولوژیکی و غیرآلی (به عنوان مثال سیلت یا خاک رس) در آب خام ورودی ایجاد می شود، به ویژه هنگامی که جریان از یک توده آب سطحی تأمین می شود. برای اندازه گیری خطر نسبی رسوب زدگی ذرات / کلوئید، متخصصان تصفیه آب معمولاً شاخص چگالی سیلت (SDI) یک جریان خوراک را اندازه گیری می کنند. اندازه گیری SDI به ویژه هنگام نصب سیستم های RO بسیار مهم است، زیرا این سیستم ها کوچکترین منافذ را در بین سیستم های فیلتراسیون غشایی دارند و در نتیجه در برابر رسوب ذرات بسیار آسیب پذیر هستند.

رسوب بیولوژیکی و میکروبی

بیوفولینگ فرایندی است که در آن میکروارگانیسم ها، گیاهان، جلبک ها یا سایر آلاینده های بیولوژیکی روی یا درون غشاهای فیلتراسیون و منافذ رشد می کنند. رسوبات بیولوژیکی و میکروبی تمایل به رشد در محیط های گرم با دبی کم دارند، جایی که آنها می توانند به غشا متصل شده و تکثیر شوند، در حالی که ماده محافظی به نام ماده چند سلولی خارج سلول (EPS) آزاد می شود. در مجموع، میکروارگانیسم ها و EPS یک لایه ژل باریک تشکیل می دهند که به عنوان بیوفیلم شناخته می شود. خواص شیمیایی بیوفیلم باعث می شود آن در برابر استراتژی های تمیز کردن طبیعی مانند شستشوی معکوس یا استفاده از بیوسیدها مانند کلر مقاوم باشد. اکسیداسیون غشا، اگرچه ماده خنثی کننده ای نیست، اما بیشتر اوقات در اثر حمله کلر آزاد ایجاد می شود، دائمی است و قابل برگشت نیست.
تصحیح غشای بیوفولد ممکن است چالش برانگیز باشد و در بعضی موارد ممکن است نیاز به تعویض داشته باشد. با گذشت زمان، یک غشای بیوفولد جریان آب را از یک طرف غشا به طرف دیگر محدود می کند، شرایطی که به شکل فشار دیفرانسیل بیشتر از خوراک به سمت جریان غلیظ است، همچنین کاهش شار غشا، فشار بیشتر و بیشتر هزینه های انرژی را سبب می گردد.

CIP رسوب گرفتگی ممبران اسمز معکوسRO عمران سازان مهاب

CIP رسوب گرفتگی ممبران اسمز معکوسRO عمران سازان مهاب

رسوب گذاری معدنی و پوسته شدن

پوسته پوسته شدن، همچنین به عنوان رسوب معدنی یا رسوبی شناخته می شود که به دلیل وجود نمک های متبلور، اکسیدها و هیدروکسیدها در محلول خوراک ایجاد می شود. پوسته پوسته شدن غشا زمانی اتفاق می افتد که مواد تشکیل دهنده محلول از محلول رسوب کرده و روی سطح غشا جمع شده و یا در منافذ آن قرار بگیرند. رسوب گذاری بارش هنگامی اتفاق می افتد که یک محلول بیشتر و بیشتر در سمت خوراک غشا متمرکز شود و در نهایت از نقطه اشباع محلول پیشی بگیرد و باعث شود مواد تشکیل دهنده یونی از محلول بیرون بیایند و متبلور شوند و یا به سطح غشا متصل شوند. سیستم های RO / NF با نرخ تبدیل بالا در معرض این خطر ویژه هستند، به ویژه هنگامی که در جریان خوراک غلظت های کلسیم یا منیزیم قابل توجهی داشته باشد.
با استراتژی های درمانی که از رشد کریستال جلوگیری می کنند ، از طریق تزریق اسید ، نرم شدن و استفاده از سایر مهارکننده های مقیاس شیمیایی ، می توان از رسوب معدنی جلوگیری کرد. در حالی که هر یک از این استراتژیها موثر است، باید مراقب بود تا از انتخاب روشهای شیمیایی مغایر با ماده غشایی انتخاب شده جلوگیری شود.

رسوب آلی

رسوب آلی به عنوان مجموعه ای از مواد بر پایه کربن بر روی غشای فیلتراسیون تعریف می شود. مواد آلی طبیعی متشکل از ترکیبات پایه کربن است که معمولاً در خاک، آب های زیرزمینی و سطحی یافت می شود و در نتیجه تجزیه مواد گیاهی و حیوانی است. مواد آلی غالباً کاملاً واکنشی هستند. تاسیسات می توانند با انتخاب ماده غشایی که در برابر جذب مواد آلی به غشا مقاومت می کند، مشکلات مربوط به رسوب زدایی آلی را به حداقل برسانند.

PRO اسمز عقب مانده فشاری Pressure Retarded Osmosis

آشنایی با اسمز عقب مانده فشاری Pressure Retarded Osmosis

اسمز عقب مانده فشار روشی است برای جدا کردن یک حلال از یک محلول که غلظت بیشتری دارد و همچنین تحت فشار است. در این روش، یک غشا نیمه نفوذ پذیر به حلال اجازه می دهد تا توسط اسمز به محلول غلیظ منتقل شود. لوب و نورمن اصطلاح “اسمز عقب مانده با فشار (PRO)” را برای استفاده در نمک گذاری آب با فرآیند غشای اسموتیکی پیشنهاد کردند (Loeb and Norman، 1975). زیرا این فرآیند از طریق اسموتیک هدایت می شود و انرژی اختلاط بین جریان های شوری بالا و کم را برای تولید انرژی مکانیکی مهار می کند. در PRO ، آب از طریق یک غشا نیمه نفوذ پذیر از یک جریان تغذیه ای با غلظت کم به یک آب نمک با غلظت بالا نفوذ می کند. اگرچه محلول تحت فشار قرار دارد، اما فشار هیدرولیکی آن کمتر از فشار اسمزی آن است. بنابراین، هنوز یک نیروی محرکه اسمزیک خالص برای انتقال آب (جریان پرمیت) از خوراک به محلول وجود دارد. جریان نفوذ تحت فشار قرار می گیرد و محلول را رقیق می کند. انرژی موجود در محلول پرمیت تحت فشار را می توان از طریق مجموعه مولد توربین به انرژی مکانیکی / الکتریکی تبدیل کرد.
جریان باقیمانده محلول تحت فشار و رقیق شده از طریق مبدل فشار (PX) ارسال می شود، جایی که انرژی فشار مانده آن با فشار دادن محلول کشش ورودی به طور کارآمد بازیابی می شود. در حقیقت، PRO را می توان فرآیند معکوس اسمز (RO) دانست. RO از فشار هیدرولیکی برای مقابله با فشار اسمزی محلول خوراک آبی (مثلاً آب دریا) برای تولید آب تصفیه شده استفاده می کند (سوریراجان ، 1970)، در حالی که PRO از فشار اسمزی آب دریا برای مخلوط کردن آب شیرین و آب شور استفاده می کند و به طور طبیعی انرژی فشاری تولید می کند سپس به انرژی مکانیکی / الکتریکی تبدیل می شود. به دلیل شباهت های آن با RO ، تلاش های اولیه برای توسعه PRO وابسته به غشاها و ماژول های غشایی بود که در اصل برای RO طراحی شده بودند. این امر جمع آوری نتایج آزمایشی اولیه را بدون نیاز به دستگاههای خاص طراحی شده امکان پذیر ساخت، اما منجر به خروجی نیرو بسیار کمتر از خروجی های مورد انتظار شد (Loeb et al.، 1976؛ Loeb and Mehta، 1979؛ Mehta and Loeb، 1978، 1979).

 

PRO اسمز عقب مانده فشاری Pressure Retarded Osmosis

PRO اسمز عقب مانده فشاری Pressure Retarded Osmosis

 

با این حال ، این استفاده از PX بود که در اصل برای برنامه های RO تهیه شده بود و باعث بهبود چشمگیر طراحی PRO شد (Loeb، 2002). در ابتدا، PRO به شکل مستقل برای تولید انرژی از مخلوط کردن جریان های کم غلظت (به عنوان مثال، آب رودخانه یا فاضلاب) با آب دریا مورد بررسی قرار گرفت. اخیراً، کاربرد آن برای افزایش تبدیل انرژی (Kim and Elimelech، 2013؛ Achilli et al.، 2009؛ Chou et al.، 2012) و اتصال با RO برای شیرین سازی آب دریا با انرژی کم (Achilli et al.، 2014؛ Altaee et al.، 2014) مورد بررسی قرار گرفته است. تحقیقات در زمینه PRO در 10 سال گذشته به دلیل علاقه مجدد گروه های تحقیقاتی آمریکایی و اروپایی به سرعت افزایش یافت، اندکی پس از مطابقت با تحقیقات آسیایی – اقیانوسیه و پیشی گرفتن از آنها. امروزه، چند کارخانه نمونه که در شرایط واقعی کار می کنند وجود دارند و در حال ساخت هستند، که نشان دهنده رشد سریع فن آوری و سطح آمادگی بالای فن آوری (TRL) است که در 10 سال گذشته توسط PRO به دست آمده است.
اگرچه فناوری PRO به عنوان یک فناوری نوظهور در نظر گرفته شده است، اما فرآیندهای PRO در هنگام استفاده از آب دریا و آب رودخانه هنوز موفقیت تجاری کسب نکرده اند. تحولات در غشاهای PRO با شار بالا و کم هزینه (و ماژول ها)، توربین های با بازده بالا و پیش تصفیه مقرون به صرفه برای جلوگیری از رسوب زدگی غشا هنوز مورد نیاز است و همچنان به عنوان یک چالش مهم مطرح است.

کاهش بیشتر انرژی توسط فناوری PRO

در تحقیقات به عمل آمده، مشخص شد که PRO تحقق بهترین بازیابی انرژی در جهان را امکان پذیر کرده و انرژی مورد نیاز برای نمک زدایی آب دریا را به حداکثر 30٪ به عنوان SEC کاهش داده است. اسمز عقب مانده فشار (PRO) فرآیندی است که می تواند با استفاده از انرژی حاصل از اختلاط آزاد گیبس، فشار اسمزی محلول نمکی را به فشار هیدرولیکی تبدیل کند. حتی اگر اصول ترمودینامیکی فرآیند PRO کاملاً ثابت شده باشد، هنوز پارامترهای خاصی وجود دارد که برای اجرای عملی فرآیند از نظر اقتصادی لازم است بهینه گردد. عملکرد غشایی یکی از مهمترین پارامترهای فرآیندهای PRO است و تقریباً همیشه عامل تعیین کننده ای برای پیاده سازی و کاربردهای مقیاس بالا است.

 

PRO اسمز عقب مانده فشاری Pressure Retarded Osmosis

PRO اسمز عقب مانده فشاری Pressure Retarded Osmosis

عملکرد یک غشا PRO به طور کلی با تراکم توان آن غشا تحت شار خاص و شرایط فشار اعمال شده اندازه گیری می شود. اوج عملکرد غشای PRO معمولاً “نقطه رفتن و ممنوعیت” برای ارزیابی فرآیند اقتصادی است. اکثر تحقیقات گذشته و فعلی در مورد فرآیندهای PRO در توسعه غشا بر ساختار غشایی فیلم کامپوزیتی نازک (TFC) متمرکز شده است. ادغام و توسعه نانومواد، تحقیقات غشای PRO را به سمت تحقیق در مورد غشاهای نانوکامپوزیت فیلم نازک (TFN) با بازده بالا سوق می دهد.

 

 

اسمز عقب مانده فشار (PRO) پتانسیل زیادی برای تبدیل شدن به یک فرایند عملی برای تبدیل فشار اسمزی محلول نمکی به فشار هیدرولیکی دارد. اکثر کاربردهای پیشنهادی فرآیندهای PRO بر اساس استفاده از فشار اسمزی محلول آب نمک از فرآیند اسمز معکوس آب دریا (SWRO) است. آب SWRO غلظت نمک نسبتاً بالایی دارد و بنابراین فشار اسمزی بیشتری نسبت به خود آب دریا دارد. فرآیند PRO از انرژی آزاد گیبس در مخلوط کردن محلول نمکی (در سمت کشش غشا نیمه تراوا) و محلول کشیده شده از محلول خوراک (در سمت خوراک غشا نیمه تراوا) استفاده می کند. اختلاف شوری این دو محلول در هنگام مخلوط کردن باعث تولید انرژی آزاد گیبس در اختلاط می شود که با فرآیند PRO به فشار هیدرولیکی تبدیل می شود. تفاوت اصلی بین اسمز رو به جلو (FO) و PRO این است که محلول کشش در فرآیند FO تحت فشار نیست در حالی که محلول کشش در فرآیند PRO تحت فشار هیدرولیکی است. فشار اسمزی در FO به میزان جریان اضافی تبدیل می شود. با این حال، در PRO، فشار اسمزی تبدیل شده، به عنوان فشار هیدرولیکی، مصرف می شود تا فشار هیدرولیکی محلول کشش را در حالی که سرعت جریان افزایش می یابد، نسبتاً ثابت نگه دارد. بنابراین، محلول نهایی که یک محلول رقیق است، دارای فشار هیدرولیکی مشابه محلول کشش است اما سرعت جریان بالاتری دارد.

 

PRO اسمز عقب مانده فشاری Pressure Retarded Osmosis

PRO اسمز عقب مانده فشاری Pressure Retarded Osmosis

چالش های موجود در بهره برداری از سیستمهای PRO

اخیراً، روند اسمز عقب مانده فشار (PRO) به عنوان یک فناوری جایگزین که می تواند با رژیم فعلی تغییر اقلیم مقابله کند، مورد توجه قرار گرفته است. اگرچه روند PRO همراه با رشد فن آوری های غشایی به طور قابل توجهی توسعه یافته است، اما هنوز هم چندین مانع در مسیر پیشرفت وجود دارد. تولید نسبتاً کم فرآیند PRO در مقیاس ماژول یکی از مشکلاتی است که مانع تجاری سازی و مقیاس بندی آن می شود. اگرچه فرآیند PRO در فرآیند مقیاس آزمایشگاهی به سطح چگالی توان 24 وات بر مترمربع دست یافته است، چنین مقداری از چگالی توان هنوز در فرآیند PRO در مقیاس ماژول تأیید نشده است. گزارش شده است که چگالی توان به 10 وات بر متر مربع کاهش می یابد هنگامی که مقیاس فرآیند افزایش می یابد، این مقدار به 15 وات بر متر مربع می رسد. علاوه بر این، این یک مشکل دیگر این است که هنوز هیچ غشایی با هدف PRO تولید نشده است. بیشتر تحقیقات در مورد PRO صرفاً با استفاده از مخالفت جهت گیری غشا از حالت AL-FS (لایه متراکم فعال رو به محلول خوراک) به حالت AL-DS (لایه متراکم فعال رو به روی محلول کشش) از غشا اسمز رو به جلو استفاده کرده است. حالت AL-DS برای افزایش شار آب فرآیند بهتر است، اما نسبت به حالت AL-FS بیشتر در معرض فولانت ها است تا عملکرد مد AL-DS سریعتر از حالت AL-FS کاهش یابد.
بر این اساس، یک فرآیند ترکیبی PRO به عنوان اقدامی برای حل مشکلات در حال افزایش است. فرآیند ترکیبی اسمز معکوسPRO مشهورترین شکل فرآیند های ترکیبی است. فرآیند ترکیبی دارای مزایای مختلفی است که به یک مرحله قبل برای فرآیند PRO نیاز ندارد و می تواند در مورد PRO مستقل بهتر عمل کند.
اسمز عقب مانده فشار (PRO) و الکترودياليز معکوس (RED) اخيراً به دليل پتانسيل آنها در توليد انرژي گراديان شوري مورد بررسي قرار گرفته است. غشاهای مبتنی بر پلیمر از اجزای اصلی این سیستم ها هستند و بنابراین، خواص این غشاها تا حد زیادی عملکرد و کاربرد هر دو PRO و RED را تعیین می کند. با توجه به اصول عملیاتی مختلف، برای غشاهای PRO، طراحی لایه پشتیبانی و لایه های فعال بسیار مهم از اهمیت بیشتری برخوردار هستند، در حالی که برای غشاهای RED ، قدرت انتخاب یون و هدایت یونی بیشتر نگران کننده هستند.
در چهار دهه گذشته، توسعه غشا بر اساس تقاضا در فرآیندهای تحت فشار رخ داده است. با این حال، در دهه گذشته، علاقه به فرآیندهای اسموتیکی، مانند اسمز رو به جلو (FO) و اسمز عقب مانده فشار (PRO)، افزایش یافته است. تهیه غشاهای سفارشی برای توسعه این فناوری ها ضروری است. اخیراً چندین روش آماده سازی غشایی بسیار امیدوار کننده برای کاربردهای FO / PRO پدید آمده است. تهیه غشاهای فیلم نازک کامپوزیت (TFC) با پشتیبانی از پلی سولفون (PSf) سفارشی، پشتیبانی از الکتروسپان، غشاهای TFC بر روی پشتیبانی آب دوست و غشاهای فیبر توخالی برای کاربردهای FO / PRO گزارش شده است. این روش های جدید اجازه استفاده از مواد دیگر به غیر از غشای استات سلولز نامتقارن (CA) و غشاهای TFC پلی آمید / پلی سولفون را می دهد.

PRO اسمز عقب مانده فشاری Pressure Retarded Osmosis

PRO اسمز عقب مانده فشاری Pressure Retarded Osmosis

اسمزمعکوس عقب مانده با فشار، مقایسه با سایر تکنیک های نوین و کاهش مصرف انرژی در جهان
مصرف انرژی جهانی به شدت وابسته به سوخت های فسیلی است که باعث تغییرات شدید آب و هوایی می شود و بنابراین، کاوش در فن آوری های جدید برای تولید انرژی های تجدید پذیر موثر در جهان نقش مهمی دارد. اسمز عقب مانده فشار (PRO) یکی از نامزدهای امیدوار کننده برای کاهش اعتماد به سوخت های فسیلی با مهار انرژی از شیب شوری بین آب دریا و آب شیرین است.
اسمز عقب مانده فشار (PRO) یک فرآیند غشایی جدید برای تولید انرژی است. PRO توانایی تبدیل اختلاف فشار اسمزی بین آب شیرین (به عنوان مثال آب رودخانه) و آب دریا به برق را دارد. علاوه بر این، می تواند انرژی را از آب نمک بسیار غلیظ در نمک زدایی آب دریا بازیابی کند.تولید انرژی نظری توسط PRO به نوع غشا و همچنین شرایط عملیاتی (یعنی فشار برگشتی) بستگی دارد. غشای FO بیشترین بازده انرژی را دارد در حالی که غشای NF کمترین بازده را دارد. با این حال، به دلیل قطبی شدن غلظت داخلی بالا (ICP) در غشای PRO ، میزان تولید انرژی کم گزراش شده است. این یافته نشان می دهد که کنترل ICP برای کاربرد عملی PRO برای تولید انرژی ضروری است.
در PRO ، آب از طریق یک غشا نیمه تراوا از یک محلول خوراک رقیق به یک محلول کشش غلیظ منتقل می شود. با افزایش جریان حجمی آب، توربین آبی برای تولید نیرو اجرا می شود. فناوری PRO طی سالهای اخیر به سرعت بهبود یافته است. با این حال، کارخانه PRO در مقیاس تجاری هنوز توسعه داده نشده است. در این زمینه، پیشرفت های اخیر در روند PRO از نظر مدل های ریاضی، ماژول های غشایی، طرح های فرآیندی، کارهای عددی و رسوب گذاری و تمیز کردن بررسی می شود. علاوه بر این، الزامات تحقیق برای سرعت بخشیدن به تجاری سازی PRO مورد بحث قرار گرفته است. انتظار می رود که این مقاله بتواند به درک جامع روند PRO کمک کند و در نتیجه اطلاعات اساسی را برای فعال سازی تحقیقات و توسعه بیشتر فراهم کند.

 

آب سختی گیری شده جهت استفاده در دیگ های بخار

آب مین زدایی شده آبی است که غلظت الکترولیت توسط فرآیندهای فنی به طور قابل توجهی کاهش یافته است. با این حال، تعریف دقیق آب دمین بسته به زمینه و کاربرد متفاوت است. معمولاً چنین تعاریفی شامل مقادیر حدی برای رسانایی الكتریكی به عنوان یك شاخص غیر اختصاصی برای غلظت الكترولیت است. آب ورودی به دیگ بایست عاری از مواد جامد محلول باشد. این نوع آب به آب معدنی نشده معروف است. زیرا مواد جامد محلول مانند املاح سخت و سایر نمک های معدنی منجر به جرم گیری و رسوب در دیگ بخار می شود.

سیستم تصفیه آب مین زدایی در دیگ های بخار برای حذف کل مواد جامد محلول از آب شامل موارد زیر است:
الف) سیستم تبادل یونی که از مبدل های کاتیونی، مبدل آنیون، دگسیفایر، مبدل تخت اختلاطی استفاده می کند
ب) اسمز معکوس و به دنبال آن مبدل تخت مخلوطی
ج) اسمز معکوس و به دنبال الکترو دیونیزاسیون
کیفیت آب دمین شده برای خوراک دیگ بخار بسته به نوع دیگهای بخار باید در محدوده 0.1 تا 0.5 یو اس بر سانتی متر باشد. منبع تغذیه آب برای تولید آب دمین شامل آب دریا، آب رودخانه، آب دریاچه، آب چاه، آب سرویس، آب صنعتی و غیره است.
انواع مختلفی از پیش تصفیه بر آب خوراک در دیگ بخار اعمال می شود. انواع فرایندهای پیش تصفیه شامل موارد زیر است:
• شفاف سازی و رسوب گذاری مانند صاف کننده و بارش شیمیایی
• فیلتراسیون مانند فیلتراسیون شن و ماسه ، فیلتراسیون چند لایه ، فوق تصفیه
شرکتهایی مانند هیتاچی Aqua-Tech در زمینه طراحی، ساخت و راه اندازی یک سیستم تصفیه کامل برای تولید آب دمین تخصص ویژه دارد.

آب مین زدایی شده سیستم تصفیه آب تولید آب دمین (DM)

آب مین زدایی شده سیستم تصفیه آب تولید آب دمین (DM)

ویژگی های آب دمین برای استفاده در دیگ های بخار

آب معدنی به ویژه برای خوراک دیگ بخار مورد نیاز است. در مواردی که کل مواد جامد محلول (TDS) آب خام بسیار زیاد باشد، از آب دمین (DM) برای آب ورودی برج خنک کننده نیز استفاده می شود. از آب DM به عنوان آب سازنده برج خنک کننده مستقیم واحد اوره (CT) استفاده می شود. دلیل این امر این است که مقدار کمی از آب در گردش در طی فرآیند بازیافت می شود.

شناخت روش های مختلف تصفیه آب دمین برای دیگ های بخار

واحد DM متشکل از واحدهای کاتیونی و تبادل آنیونی و به دنبال آن یک واحد بستر مخلوط است. معمولاً واحدهای تبادل کاتیونی توسط اسید سولفوریک احیا می شوند. واحدهای تبادل آنیونی توسط هیدروکسید سدیم احیا می شوند. در برخی از سیستم ها که مبدلهای آنیون پایه ضعیف نیز نصب شده است، بازسازی توسط هیدروکسید آمونیوم انجام می شود. به طور کلی، بازسازی واحد بستر مخلوط با استفاده از اسید سولفوریک و هیدروکسید سدیم انجام می شود.
در یک تحقیق مقایسه حضور و عدم وجود یک سیستم نرم کننده و سختی گیر به عنوان پیش تصفیه آب که توسط غشاهای اسمز معکوس به فرآیند جداسازی تغذیه می شود، انجام شد. پارامترهای زیر در اسمز معکوس مورد بررسی قرار گرفت: pH آب خوراک. میزان نفوذ ؛ فشار آب تغذیه در غشا در مرحله اول و دوم ؛ و فشار رد، چه در غیاب و چه در حضور سیستم نرم کننده. نتایج نشان داد که گنجاندن یک سیستم نرم کننده به عنوان پیش تصفیه برای تغذیه فرآیند اسمز معکوس از رسوب زودرس سیلیس جلوگیری کرده و در نتیجه عمر مفید غشاها را افزایش می دهد.
نتایج این پژوهش نشان داد آبی که برای روش اسمز معکوس جمع آوری شد حاوی غلظتهای زیادی از سختی و سیلیس بود و با توجه به تغییر چاه تنوع ایجاد شد. غشا در حضور سیستم نرم کننده غلظت سیلیس را از 97٪ به 98٪ کاهش داده و به مقدار متوسط نفوذ 02/0 ± 67/0 میلی گرم در لیتر می رسد. سختی با نصب نرم کننده از بین رفت، در نتیجه به کاهش سیلیس در پساب کمک می کند و موجب ارسال آب خالص و با کیفیت بالاتر به سیستم تولید بخار فشار بالا است. مقادیر SDI زیر 3 باقی ماند، که مقدار لازم برای عملکرد خوب غشا بود، در حالی که بعد از نصب سیستم نرم کننده مقدار کدورت دو برابر شد. با این حال، زیر NTU یک باقی مانده است که حداکثر مقدار آب آشامیدنی قابل قبول است. با ارزیابی تأثیر PH بر غلظت نمک ها، مشاهده شد که سختی، رسانایی و TDS در میزان تغذیه تفاوت معنی داری ندارد، که از سیلیس متفاوت است، که در صورت وجود سختی، کمترین میزان را دارد.

در مطالعه دیگری فرآیند اسمز معکوس برای بازیابی آب در صنعت تولید روغن نخل استفاده شد و از آن به عنوان آب دمین دیگهای بخار استفاده شد. این سیستم در کاهش نیاز به اکسیژن شیمیایی، سختی و TDS موثر بود. این سیستم و به دنبال آن تبادل یونی، می تواند برای به دست آوردن آب بدون مواد معدنی استفاده شود. فرآیند اسمز معکوس و مبادله یونی برای بدست آوردن آب دمین برای دیگهای بخار مقایسه شد و این کار منجر به کاهش در هزینه های عملیاتی و اتوماسیون در فرآیند تصفیه آب شد. این ماده حاوی 124 میلی گرم در لیتر سختی و 5 میلی گرم در لیتر سیلیس بود. در آب جمع آوری شده برای بررسی عوامل هیدرودینامیکی، 140 میلی گرم در لیتر سختی و 8 میلی گرم در لیتر سیلیس به دست آمد. نتیجه فرآیند ثانویه صنعت فولاد تحت درمان قرار گرفت و حاوی مقادیر 271 میلی گرم در لیتر سختی و 664 میلی گرم در لیتر سیلیس بود.
محدودیت جدی غشا پلی آمید اسمز تجاری حساسیت آنها در برابر حمله کلر است. مطالعه تخریب هیپوکلریت سدیم در غشاهای اسمز معکوس ساخته شده از پلی آمید، نشان داد که کلرزنی پیوندهای هیدروژن را در لایه های پلی آمید از بین می برد، و باعث کاهش قابل توجهی در جریان غشایی می شود، به ویژه در مقادیر pH اسید. هزینه بالای غشاهای مورد استفاده در اسمز معکوس، باید حفظ شوند. سیلیس بزرگترین علت رسوب زدایی در آب شیرین کن است و حذف آن دشوار است. بعلاوه ، فرآیند تمیز کردن غشاهای آلوده به بارش سیلیس خطر آسیب رساندن به آن را دارد .
حلالیت سیلیس به شدت تحت تأثیر دما ، PH و وجود نمک ها میباشد. جلوگیری از رسوب کربنات کلسیم در واحدهای کوچک اسمز معکوس را می توان با بازیابی کم نفوذ را کنترل کرد تا غلظت بی کربنات در جریان کنسانتره کاهش یابد. در سیستم های بزرگتر، جایی که از جریانهای بالاتر نفوذ استفاده می شود، باید اقدامات اضافی با افزودن اسید به جریان خوراک (که امکان تبدیل بیکربنات به اسید کربنیک و افزایش حلالیت کربنات کلسیم به دلیل pH پایین را فراهم می کند) انجام شود. علاوه بر این، یک مهار کننده رسوب یا با حذف سختی قبلی، با نصب یک سیستم نرم کننده انجام می پذیرد. استفاده از پیش تصفیه آب در روش اسمز معکوس رسوب گذاری در غشاها را به حداقل می رساند، بنابراین تولید یک جریان پرمیت روان و زلال، با نمک کم و طول عمر بیشتر برای غشا از مزیت های اعمال پیش تصفیه خواهد بود. علاوه بر این، آب باید با معیار SDI (شاخص تراکم سیلت) متناسب باشد تا از گرفتگی جلوگیری کند.

آب خوراک برای دیگ بخار قلب تپنده یک نیروگاه حرارتی است و در این کاربرد به آب با خلوص بالا برای محافظت از تاسیسات در برابر خوردگی و رسوب نیاز است. مناسب بودن روش RO برای چنین کاربردهایی به امکان تأمین نیازهای زیر بستگی دارد:
• شار نفوذ زیاد در فشار متوسط غشای ترانس (TMP).
• قابلیت نگهداری خوب مقاومت مکانیکی غشا و پایداری شیمیایی و حرارتی ؛
• مقاوم در برابر عوامل تمیز کننده و ضد عفونی کننده
• مقاوم در برابر عملکرد میکروبی
• محافظت در برابر رسوب زیاد
• انطباق با الزامات ایمنی
• عمر طولانی و هزینه مقرون به صرفه

RO روندی است که بالاترین کیفیت آب را تضمین می کند، باعث کاهش سطوح بالای نمک های محلول و مواد جامد معلق می شود ، اما RO هنگام استفاده از این روش برای حذف ترکیبات آلی با محدودیت های خاصی روبرو خواهید شد. در تحقیقات گذشته، جنبه های مختلف فنی استفاده از اسمز معکوس برای مین زدایی آب خوراک دیگ بخار برای نیروگاه حرارتی مورد مطالعه و بهینه سازی قرار گرفت ، در این کار ، مطالعه بر روی مین زدایی آب خوراک دیگ بخار انجام شد که در نیروگاه های حرارتی توسط اسمز معکوس بسیار کاربرد دارد. اشکال عمده آب مین زدایی شده ایستگاه رسوب زدایی غشاهای اسمز معکوس است که محدودیت های اقتصادی و زیست محیطی بسیار مهمی ایجاد می کند. استفاده از رویکردهای مختلف چند متغیره (تجزیه خوشه ای (CA)، تجزیه و تحلیل مولفه های اصلی، تخصیص منبع با رگرسیون چندگانه روی مولفه های اصلی برای تفسیر این ماتریس های داده پیچیده درک بهتری از کیفیت آب و وضعیت اکولوژیکی سیستم ها ارائه می دهد و ارزشمندی را ارائه می دهد ابزاری برای مدیریت قابل اعتماد منابع آب و همچنین راه حل های سریع در مورد مشکلات آلودگی میباشد.

آب مین زدایی شده سیستم تصفیه آب تولید آب دمین (DM)

آب مین زدایی شده سیستم تصفیه آب تولید آب دمین (DM)

فرایندهای تبادل یونی برای تهیه آب دمین

فرآیندهای تبادل یونی برای تصفیه آب در مقیاس فنی برای اولین بار در دهه 1930 تا 1940 توسعه یافت و از دهه 1950 به طور گسترده مورد استفاده قرار گرفت. فرایندهای جریان متقابل برای بازسازی در اوایل دهه 1970 معرفی شده اند و در دهه 1990 با تولید رزین های تبادل یونی تک کره بیشتر بهینه شدند.
در فرآیند سختی زدایی با استفاده از تبادل یونی، کاتیونهای محلول در آب با یونهای هیدروژن مبادله می شوند، در حالی که آنیونهای محلول با یونهای هیدروکسید مبادله می شوند. هر دو با هم با آب واکنش نشان می دهند. مبدل های یونی با اسیدها و مواد سوزاننده احیا می شوند. بر این اساس، کارخانه های تبادل یونی به تجهیزات ذخیره و استفاده از مواد شیمیایی و همچنین تجهیزات برای خنثی سازی پساب نیاز دارد. به این ترتیب با یک طراحی مدون هم مصرف شیمیایی و هم تخلیه پساب با غلظت کل مواد جامد محلول (TDS) آب خام متناسب خواهد شد.
اولین مرحله از مین زدایی تبادل یونی، یونیزاسیون توسط مبدل های کاتیونی و آنیونی است که به صورت سری مرتب شده اند. در کارخانه های مدرن، رسانایی الکتریکی آب یونیزه شده تقریباً 2/2 الی 2 μS / سانتی متر است. برای پرداخت بیشتر آب یونیزه شده، از یک مبدل بستر مخلوط در زیر مبدل آنیونی استفاده می شود. آب زلال شده توسط مبدل بستر مخلوط معمولاً دارای رسانایی الکتریکی 8 0.08 μS / cm و غلظت اسید سیلیسیک μ 10 میکروگرم در لیتر است، که با استانداردهای اروپا برای عملکرد توربین بخار مطابقت دارد.

فرایندهای غشایی برای تهیه آب دمین از آب در دیگ های بخار

اسمز معکوس به عنوان فرآیندی برای خالص سازی آب در مقیاس فنی در دهه 1960 توسعه یافته است ، از دهه 1980 به طور فزاینده ای استفاده می شود و با توسعه ماژول های غشای مارپیچی در اواسط دهه 1980 به عنوان یک فرآیند استاندارد مورد تایید قرار گرفت . الکتروديونيزاسيون بعنوان فرآيندي براي زلال سازی به آب معدنی در مقياس بزرگتر در اوايل دهه 1980 توسعه يافت، از اواخر دهه 1980 به آهستگی در حال افزايش است و از اوايل دهه 2000 بعنوان فرآيند تصفيه جایگزین برقرار شده است.
فرآیندهای جداسازی غشا برای تصفیه آب بر اساس عبور یونهای محلول در آب توسط غشا نیمه نفوذ پذیر کار میکند. یونهای عبورداده شده در یک محلول آبی غلیظ باقی می مانند، که به طور مداوم تخلیه می شود. بنابراین آب پساب باید تخلیه گردد و در نتیجه مصرف آب خام در فرآیندهای غشایی نسبتاً زیاد است، اما با کیفیت آب خام در سایر واحد های طراحی شده به روش های دیگر تغییر قابل توجهی نمی کند.
فرآیندهای غشایی به طور مستقیم مواد شیمیایی را برای تصفیه مصرف نمی کنند. با این حال، نوعی پس تصفیه خوراک آبی شامل بازسازی با مواد شیمیایی، به عنوان مثال در روش تبادل یونی یا نوعی ضدعفونی خوراک شیمیایی تقریباً بدون استثنا، علاوه بر تمیز کردن شیمیایی دوره ای عناصر غشا، مورد نیاز است. این بدان معناست که فرآیندهای جداسازی غشا برای تصفیه آب به طور کلی “بدون مواد شیمیایی” اساساً وجود ندارد. صرف نظر از این، مصرف کلی مواد شیمیایی معمولاً در مقایسه با روش مین زدایی با مبادله یونی به طور قابل توجهی کمتر است، به این معنی که تجهیزات گسترده ای برای ذخیره سازی و جابجایی یا مواد شیمیایی یا خنثی سازی پساب معمولاً مورد نیاز نیست.

اولین مرحله از مین زدایی آب با جداسازی غشا با استفاده از یک سیستم اسمز معکوس حاصل می شود. به این ترتیب آب معدنی شده نفوذ می کند. هدایت الکتریکی نفوذ در مورد یک نیروگاه اسمز معکوس با فشار بالا در حدود 5 الی 30 میکرو ثانیه بر سانتی متر، و دریک کارخانه اسمز معکوس فشار پایین در حدود 30 الی 100 میکروگرم بر سانتی متر و در حدود 0.2 الی 2 میکرو ثانیه در سانتی متر در مورد واحد های اسمز معکوس دو پاس می باشد.
به این ترتیب، برای انجام فرآیند نفوذ اسمز معکوس، از یک واحد EDI استفاده می شود. آب زلال شده تحت شرایط مطلوب دارای هدایت الکتریکی 8 0.08 μS / cm و غلظت اسید سیلیسیک μ 10 میکروگرم / L است، بنابراین مطابق با استانداردهای اروپایی برای عملکرد توربین بخار مناسب است. اثر بخشی سیستم های EDI با توجه به کیفیت خوراک به طور قابل توجهی متفاوت است، نیاز به خوراک با غلظت جامد محلول در کل (TDS) کم و غلظت دی اکسید کربن کم است. مراحل تصفیه بالادست باید بر این اساس طراحی شوند، به عنوان مثال با یک گازگیر غشا در بالادست واحد EDI، یا یک سیستم حاوی هیدروکسید سدیم همراه با یک کارخانه اسمز معکوس دو پاس می توان فرآیند موفقی را طراحی نمود. به منظور حصول اطمینان از کیفیت قابل اطمینان آب دمین حتی در صورت نوسانات کیفیت خوراک، روال معمول این است که یک دستگاه زلال ساز بستر ترکیبی در پایین دست واحد EDI ترتیب دهید. به عنوان یک جایگزین برای موارد فوق، استفاده از روش های تصفیه ترکیبی توصیه می گردد. اسمز معکوس نیز می تواند فقط با یک مبدل بستر مخلوط، یا با ترتیبی از مبدل کاتیونی، مبدل آنیونی در یک بستر ترکیبی مورد بهره برداری قرار گیرد.

آب مین زدایی شده سیستم تصفیه آب تولید آب دمین (DM)

آب مین زدایی شده سیستم تصفیه آب تولید آب دمین (DM)

آب مین زدایی شده در کارخانه های تولید دیگ های صنعتی

در مورد کارخانه های تولید دیگ بخار پوسته صنعتی، تصفیه آب برای تولید آب از روش هدایت الکتریکی μ 30 μS / cm استفاده می شود. بسته به شرایط عملیاتی خاص و کیفیت آب خام، ممکن است در بعضی موارد فرایندهای تبادل یونی خاصی از نظر اقتصادی مقرون به صرفه تر باشد، به عنوان مثال: غیرآلیکالیزاسیون یا مین زدایی از تبادل یونی. با این حال ، ذخیره سازی مواد مورد نیاز و استفاده از اسیدها و مواد سوزاننده اغلب به عنوان یک نقطه ضعف قابل توجه برای چنین کاربردهایی محسوب نمی شود.

ملاحظات اقتصادی ، هزینه های عملیاتی و سرمایه گذاری
به منظور مقایسه اقتصادی طرح های مختلف تصفیه خانه از بین بردن مایعات ، هر دو هزینه سرمایه گذاری و هزینه های عملیاتی باید بر اساس منبع آب خام، کیفیت آب خام، هزینه آب خام، هزینه تخلیه پساب، هزینه برق و هزینه های مواد مصرفی مورد ارزیابی قرار گیرد.
هزینه های سرمایه گذاری برای سیستم های تبادل یونی وجداسازی غشا معمولاً با طراحی های استاندارد نزدیک به یکدیگر هستند. ارزیابی دقیق تر نیاز به در نظر گرفتن موارد خاص دارد. با در نظر گرفتن تجهیزات مورد نیاز برای ذخیره و جابجایی مواد شیمیایی یا خنثی سازی پساب، هزینه های کلی سرمایه گذاری برای کارخانه های تبادل یونی اغلب کمی بیشتر است. با این حال، این تجهیزات ممکن است به هر حال برای کارخانه پرداخت میعانات تبادل یونی مورد نیاز باشد، بنابراین در نظر گرفتن تنها هزینه های تقسیم شده امکان پذیر است. به دلیل کار متناوب، واحدهای تبادل یونی معمولاً با 100٪ افزونگی طراحی می شوند که برای سیستم های غشایی مورد نیاز نیست. براین اساس، یک سیستم غشایی اسمز معکوس با افزونگی کمتر ممکن است در تئوری هنوز در دسترس بودن بیشتری نسبت به تبادل یونی داشته باشد. از طرف دیگر، یک واحد غشایی با افزونگی یکسان در مقایسه با واحد تبادل یونی حدود 50٪ تا 100٪ گران تر است. بنابراین، مقایسه مستقیم افزونگی و در دسترس بودن در مقابل هزینه های سرمایه گذاری به راحتی امکان پذیر نیست. هزینه های پرسنل برای کار و نگهداری کارخانه های تبادل یونی و جداسازی غشا تقریباً برابر است. با این حال، هزینه های مواد برای تعمیر و نگهداری – به معنی هزینه های رزین های تبادل یونی یا غشا، تقسیم بر طول عمر مربوطه – ممکن است برای سیستم های جداسازی غشا به میزان قابل توجهی بالاتر باشد. این امر عمدتاً به دلیل هزینه های نسبتاً بالای ماژول های EDI است که معمولاً در صورت خرابی نیاز به تعویض کامل دارند.

تفاوت های تهیه آب دمین میان دو روش تبادل یونی و اسمز معکوس

بین فرآورده های تبادل یونی و جداسازی غشا در مورد مواد مصرفی برای انجام فرآیند تصفیه تفاوت های قابل توجهی وجود دارد. برای مین زدایی آب شیرین، مبدل های یونی در مقایسه با فرآیند جداسازی غشا به میزان قابل توجهی آب کمتری مصرف می کنند، اما ممکن است به نوبه خود مواد شیمیایی بیشتری مصرف کند. مصرف مواد شیمیایی و هم تخلیه فاضلاب در واحد های مجهز به سیستم های تبادل یونی تقریباً به طور خطی به غلظت کل جامدات معلق (TDS) آب خام وابسته است، در حالی که در واحد های شامل جداسازی غشایی این رابطه برقرار نیست. در صورت کم بودن TDS (رسانایی الکتریکی <500 μS / cm)، تبادل یونی اغلب مقرون به صرفه تر است، در حالی که فرایندهای جداسازی با غشا، در صورت داشتن TDS بالا، مقرون به صرفه تر هستند (هدایت الکتریکی 1000 ≥ μS / cm).

آب مین زدایی شده سیستم تصفیه آب تولید آب دمین (DM)

آب مین زدایی شده سیستم تصفیه آب تولید آب دمین (DM)

مکانیسم دقیق حذف جامدات معلق با استفاده از شناورساز DAF

مکانیسم دقیق حذف جامدات معلق با استفاده از شناورساز DAF

 سیستم های IdealDAF بسیار سبک و مقاوم در برابر خوردگی، آب های با سختی و جامدات معلق فراوان بوده و فضای بسیار محدودی را اشغال می کنند. قابلیت ضدعفونی آب با UV در این سیستم ها وجود دارد.